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Abstract Field biologists use animal sounds to dis-
cover the presence of individuals and to study their
behavior. Collecting bio-acoustic data has traditionally
been a difficult and time-consuming process in which
researchers use portable microphones to record sounds
while taking notes of their own detailed observations.
The recent development of new deployable acoustic
sensor platforms presents opportunities to develop au-
tomated tools for bio-acoustic field research. In this
work, we implement both two-dimensional (2D) and
three-dimensional (3D) AML-based source localiza-
tion algorithms. The 2D algorithm is used to local-
ize marmot alarm-calls of marmots on the meadow
ground. The 3D algorithm is used to localize the song
of Acorn Woodpecker and Mexican Antthrush birds
situated above the ground. We assess the performance
of these techniques based on the results from four field
experiments: two controlled test of direction-of-arrival
(DOA) accuracy using a pre-recorded source signal for
2D and 3D analysis, an experiment to detect and local-
ize actual animals in their habitat, with a comparison
to ground truth gathered from human observations,
and a controlled test of localization experiment using
pre-recorded source to enable careful ground truth
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measurements. Although small arrays yield ambiguities
from spatial aliasing of high frequency signals, we show
that these ambiguities are readily eliminated by proper
bearing crossings of the DOAs from several arrays.
These results show that the AML source localization
algorithm can be used to localize actual animals in
their natural habitat using a platform that is practical
to deploy.
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1 Motivation

Field biologists use the vocalizations of animals to
identify individuals, census species and to study the
dynamics of acoustic communication [1, 2]. However,
even experienced field biologists have difficulty accu-
rately identifying and locating species acoustically, and
most researchers are unable to identify more than a
few distinctive individuals. Some acoustic phenomena
such as alarm calling (where individuals produce spe-
cific vocalizations in response to predators [3]) are
relatively rare thus difficult to study, while others, such
as duetting (where two individuals interdigitate their
vocalizations [4]) are extremely difficult to properly de-
scribe. Thus, field research of natural populations will
benefit from the use of embedded sensor arrays that
are constantly alert, and that are able to detect acoustic
events, localize the sound’s source, and identify the
individual or species producing the sound.

Alarm calls form an ideal system for motivating and
testing our technology because they are infrequent,
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they are loud, and they are biologically important.
The yellow-bellied marmots at the Rocky Mountain
Biological Laboratory (RMBL), in Gothic, Colorado,
have become a model system for studying alarm com-
munication. Marmots communicate risk by emitting a
simple single note alarm call and emit more calls and at
a higher rate as risk increases [5]. However, the modal
number of alarm calls produced is one, and it is remark-
ably difficult to identify the individual who produced
the call (we are able to localize and identify only about
30% of callers—Blumstein, unpublished data). Calls
are individually-specific and the adaptive utility of this
individuality has been the focus of considerable study.
We know that calls contain information about the age,
sex and exact identity of the caller [6], and we know
that marmots are able to discriminate individuals based
solely on their calls [7].

Tools to remotely sense, record and automatically
analyze acoustical bird sounds would be enormously
helpful for studies in ecology, biodiversity and behav-
ior. Our work with birds has focused on two paradigms
that represent the problems involved: (1) Mexican
Antbirds in tropical rainforests with very complex
acoustical environments. To the human listener, the
unfiltered sounds, many quite similar even between
taxonomic groups, combine into a noisy and confusing
cacophony, making it difficult to isolate specific acoustic
signals. While general studies of rainforest acoustics
have been reported, Embedded network sensing boxes
(ENSBox) can be deployed to more thoroughly study
the rainforest environment including species identities,
spatial and temporal patterns, and joint utilization of
frequency and patterning ranges by the acoustic com-
munity [8, 9]. (2) Acorn Woodpeckers (Melanerpes
formicivorus) are a common, conspicuous and very
chatty birds throughout the foothill and woodlands
in much of California and Southwestern US down to
Mexico and extending into Colombia. The species has
received special attention from biologists because of
two unique properties. One is its foraging habit. In
the fall, woodpeckers store food, mainly acorns, in the
holes drilled on a specialized storage trees called gra-
naries. The other is its extreme sociality. In California,
Acorn Woodpeckers live in family groups of up to 15
individuals of both sexes and all ages. Each family
group shares and defends an all-purpose territory,
inside of which there are one or more granaries for
acorn storage. Groups roost communally and all breed-
ing females of the group lay eggs in a single nest. The
mating system of Acorn Woodpeckers varies between
monogamy and polygynandry.

The sorts of questions that we would want to address
with the Acorn Woodpeckers are much more detailed

than those of the complex Mexican Antbirds, in large
part because of the developed infrastructure and be-
cause of the detailed knowledge already accumulated
about these populations. At Hastings Biological Field
Station, Monterey, CA, we would like to address ques-
tions such as: (1) whether vocal traditions exist in this
cooperatively breeding species; (2) whether individual
variation in calls is more closely allied with kin or
group associations, and whether individual change vo-
calizations when they move from one group to another;
(3) whether there are sex differences in vocalizations
that match the matrilineal societies often found in this
species; and (4) the extent to which birds use vocal-
izations to discriminate among group and non-group
members and among kin and non-kin.

Using the Acoustic ENSBox system, a multi-node
distributed recording array, we evaluated the ability of
an Approximate Maximum Likelihood (AML) source
localization algorithm to correctly identify the location
of naturally alarm calling marmots as well as recorded
and re-broadcast alarm calls. Field tests allowed us to
comprehensively evaluate all the features (node time
synchronization, self-localization, event detection, and
AML-based DOA bearing estimation) of the Acoustic
ENSBox. Tests under field conditions are essential be-
cause animals move their heads while vocalizing, and
because there is often substantial background noise
through which the signals must be detected.

The main contributions of this paper are: (1) the
implementation of a deployable on-line marmot call
detection algorithm, (2) a centralized marmot call lo-
calization system based on AML bearing estimation,
(3) an analysis of complexity and performance of the
3D AML algorithm for source localization, and (4) a
thorough evaluation of the effectiveness of these algo-
rithms based on a field study detecting real animals in
their natural habitat.

2 Overview of Approach

Distributed source localization is a broad and active
research area, and a diverse set of solutions have been
proposed. These solutions fall into three categories, in
which the localization solution is based on (1) differ-
ential signal amplitudes, (2) time-difference-of-arrivals
(TDOA), and (3) comparison of direction-of-arrival
(DOA) estimates. In general, characteristics of the ap-
plication, the source signal, and the environment will
determine which of these solutions performs best.

The characteristics of the environment and the
nature of the source signals rule out some of these
solutions. The first alternative, amplitude-based local-
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Figure 1 Block diagram of a DOA-based localization system.
The AML algorithm was run centrally in the experimental
results.

ization, is ruled out by foliage and terrain complexity,
which yields non-isotropic signal attenuation patterns.
Without discovering the complex model of the signal
attenuation, received amplitude values are difficult to
map to propagated distances.

The second alternative, TDOA-based localization,
requires precise acquisition of the phases of the signals
arriving at different nodes. However, this approach is
not Maximum Likelihood. Our approach has therefore
focused primarily on the third alternative, in which
the location estimate is computed by combining DOA
estimates assessed at a distributed set of locations.
Our implementation employs a distributed set of small
“sub-arrays”, each capable of independently detecting
the target signal and producing a DOA bearing esti-
mate. The crossing of these bearing estimates are then
combined to produce an estimate of the most likely
source location. In the next subsections, we give a brief
overview of this implementation, and highlight some
key features of the platform. A detailed discussion of
the processing algorithms follows in Section 3.

2.1 DOA-based Localization Using Sub-arrays

Figure 1 shows a high level diagram of a DOA-based
localization system. To apply this method, we deploy
a collection of sub-arrays surrounding a target of in-
terest. The sub-arrays are typically deployed over a
wide area relative to the size of each sub-array. In this
paper, we use two different versions of the Acoustic
ENSBox platform [10] shown in Fig. 2 and described
in more detail in Section 2.3. The first version is used in
RMBL, where each node hosts an 11.31 cm tetrahedral
microphone sub-array rotated to form an 8 cm square
when viewed from above. The second version is also
a tetrahedral with 12 cm square when viewed from
above. These sub-arrays are typically deployed at least
10 m apart, and often much farther: in the three sets of
experiments presented in this paper, six sub-arrays are
deployed surrounding a 70 × 140 m area (see Fig. 8).
This large inter-node spacing means that any target
source can be assumed to be in the far field of all but
perhaps one of the nodes.

After deployment, the sub-arrays are automatically
calibrated to determine the relative positions and orien-
tations of the sub-arrays in the system. Next, software
on the nodes begins implementing the detection and
localization algorithms.

The detection software on each node performs a
streaming analysis of the acoustic data in real time,
identifying likely animal call events. Whenever any
individual node’s call detector is triggered, a radio
message is sent to trigger all the nodes in the system
to start recording that event and queue it for further
processing. This approach enables optimization of the
detection threshold such that only the nearest node to
a source needs to be triggered.

Figure 2 The acoustic
ENSBox platform.

(a) ENSBox Ver. 1. Left: Complete set at the field. (b)  ENSBox Ver.2.
Right: the microphone array.
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Once identified, segments of audio containing calls
are analyzed using the (AML) algorithm described in
Section 3.2. Based on the relative phases of signals
recorded at the microphones in a given sub-array, this
algorithm determines a likelihood metric describing the
likely bearing to the source. These metrics are then
collected centrally, placed on a map according to the
location and orientation of each sub-array, and com-
bined into a 2D or 3D pseudo-likelihood map of the
source location. This map is formed by projecting each
likelihood metric outwards from each node to form the
joint approximate likelihood of a source at every point
in the 2D or 3D space.

2.2 Performance Impact of Sub-array Size

The performance of the AML bearing estimation al-
gorithm depends on characteristics of the source sig-
nal, and on the size and geometry of the array. The
acoustic sources produced by different animals can vary
significantly. In general, we consider these signals as
wideband because the frequency ratio of the highest to
the lowest is much larger than one. However, when a
source may contain only few closely-spaced dominant
frequencies, then it may behave more like a narrow-
band signal. This may presents a problem depending
on the selection of the spacings among the sensors
in a sub-array. When a narrowband source is present,
there is a risk that the algorithm may return ambiguous
likelihood metric results. Just as the Nyquist theorem
states that to avoid aliasing, a signal must be sampled at
least at two times the maximum frequency of the signal,
an analogous property holds for spatial sampling. In
order to measure the phase of an incoming signal by
comparing two points in space, those two points must
lie in the same half-wave. Energy in frequencies with
wavelengths shorter than two times the sensor spacing
will be aliased into lower frequencies. This implies that
for two sensors with spacing D and signal propagation
speed Vs, the maximum frequency detectable without
aliasing is Fc = Vs/(2D). For more than two sensors
with maximum spacing D, the aliasing can theoretically
disappear, but the sensitivity for some array configura-
tion is quite high, thus a little noise can create ambigu-
ous response.

The likelihood metric of the bearing estimate is typ-
ically represented as a polar plot for a 2D case and as
a surface for a 3D case, where the likelihood value is
plotted as a function of the bearing angle. In such a
plot, the most likely bearing estimate is represented by
the midpoint of the largest lobe of this metric. Array
size has a two-fold impact on these results. As the array
size increases, spatial aliasing can become a problem.

Whenever the frequency content of the source signal
is higher than the critical frequency Fc, spatial aliasing
will produce grating lobes, (i.e., false lobes) that point
in directions other than the true source bearing [11].
These grating lobes often have heights comparable to
the true main lobe due to array geometry physical limi-
tations. In the presence of noise, reverberation, or com-
peting sources, grating lobes can severely complicate
identification of the true DOA. However, as array size
decreases, the width of the main lobe also increases.
This tradeoff is depicted in Fig. 3 for a 2D case, which
shows simulated beam patterns for two different size
arrays detecting a 4 kHz source; the larger array has
narrower main lobes, but more potential ambiguity.

In the analysis of a single array, there is usually a
“sweet spot” for array size where the maximum value
of the side lobes will be less than a certain fraction of
the main lobe and thus can be excluded. However, for
high frequency sources (e.g., 6 kHz and above for our
implemented array), the array size sweet spot becomes
quite small, producing a wide main lobe. Upon pertur-
bation of an additive noise, the main lobe width directly
impacts the variance of the DOA estimate, which often
is investigated via a small perturbation lower bound
such as the Cramér-Rao Bound (CRB). To avoid this
problem, we ensure the main lobe width by using rel-
atively large arrays and address the ambiguity prob-
lem by other means. When bearing data from multiple
arrays is combined, some of the false lobe DOAs are
rejected because they are inconsistent with the lobes
from other nodes. While the “beam” projected from a
false lobe has some chance of intersecting with other
lobes, the DOAs of the true lobes from all the sub-
arrays have a much higher likelihood of crossing near
the true location of the source.

This approach has its limits; as the number of side
lobes increases, this approach will eventually fail, hence

4KHz, 15cm Array4KHz, 6cm Array

Figure 3 Simulated 2D beam patterns for two arrays detecting
marmot alarm calls. Larger arrays yield narrower lobes, but more
ambiguity.



J Sign Process Syst (2009) 57:415–436 419

the array size cannot be made arbitrarily large. For
our purposes, we chose a convenient array size from
a practical engineering implementation point of view,
suitable for a class of sources of interest. These arrays
are hosted by a deployable, general purpose sensing
platform described in the next section.

2.3 Implementation of the Sub-array Nodes

The deployment described in this paper comprised 6
nodes, each an independent wireless processor hosting
a sub-array. In undertaking this work, we were fortu-
nate to be able to build upon an existing platform, the
Acoustic ENSBox [10]. The ENSBox was specifically
designed to support this type of application, and it has
numerous features that make this type of deployment
practical for the first time.

Packaging While packaging issues are far from novel,
they are quite important in practice. In prior attempts
to record using multiple arrays, our equipment was
assembled with “off-the-shelf” components, dozens of
microphone XLR cables and many batteries to support
devices that were not tuned for low power consump-
tion. These solutions are cumbersome. In contrast, the
ENSBox is a wireless distributed sensor system. Each
unit is a self-contained processor and array, has an
internal battery with a lifetime of 5 h, is water-resistant,
and has an array head that can be fitted to a tripod.
The second generation of this ENSBox is smaller,
lighter, wire-free, and easier to deploy. This box also
has a GPS receiver and an accelerometer for tilt angles
measurement.

Management As the size of a deployment grows,
management rapidly becomes a critical concern. The
larger the number of nodes deployed, the greater the
likelihood that one or more nodes is faulty—and this
is especially true for prototype systems. To facilitate
deployment, the ENSBox supports a web-based man-
agement tool hosted on each node. By connecting
to any one of the nodes and setting it into “master
mode”, the user can use that node as a gateway to
centrally manage the rest of the network. Diagnostics
available through this interface can identify problems
with individual nodes and thus ensure that all nodes
are functioning properly. Once the system is up, the
web interface is also used to initiate and manage the
application.

Self-configuration Self-configuration is another im-
portant factor in deployments. The ENSBox system
features a self-configuring multi-hop wireless network,
with network diagnostics available from the manage-

ment gateway. It also features a sophisticated array self-
calibration system that can establish precise positions
and orientations for all of the arrays in the system.
This system, described in detail in [10, 12], can compute
relative array positions to within 10 cm over an 50 ×
80 m field, and estimate array orientation to within
1.5◦. Extensive testing has proved that the system is
easy to operate, achieves detection ranges upwards
of 100 m, is robust to noise and intervening foliage,
and provides a consistency metric that immediately
indicates whether the results are likely to be valid.
By attending to the consistency metric and performing
simple sanity-checks, we have yet to fail to get accu-
rate self-localization results from a field deployment.
This feature of the ENSBox is an enormous time-saver
because it gives reliable results with low effort, and
eliminates the need to carefully survey the deployment
positions.

Software The final advantage of the ENSBox has
been as an application development platform. The
ENSBox provides a synchronized sampling framework
that greatly simplifies the development of collabora-
tive sensing application software [13]. The detector
application described in this paper is 800 lines of C
code and took about 1 week to develop within the
EmStar software framework [14]; it detects marmots
and triggers synchronized processing on all nodes in the
system. Because the system is built on a 32-bit Linux
processor, it has the additional resources to support
rapid prototyping and minimize early optimization. In
the next section, we describe some algorithms we have
implemented and tested using this hardware.

3 Algorithms

The algorithms we describe herein are not wholly
novel; in fact, the basic algorithms have all been intro-
duced in prior work. Rather, the novelty in this work
lies in the evaluation of these algorithms in the context
of a real deployment and a real scientific application,
and in the implementation details involved in tuning the
algorithms for this application. In this section we will
discuss the details of our marmot call detection algo-
rithm and the AML bearing estimation and localization
algorithm.

3.1 Marmot Event Detector

The marmot detection algorithm is an on-line statisti-
cal classifier for identifying the bursts of energy in a
streaming signal in a frequency range of interest [15].
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Assuming the noise distribution is Gaussian N(μ, σ 2),
we can use a smoothing filter to compute on-line es-
timates μ̄ and σ̄ . From these estimates, we define a
threshold value μ̄ + βσ̄ , or β standard deviations above
the mean energy value. Thus, if our noise model holds,
any energy value exceeding this threshold is either part
of the signal, or is noise with probability 1 − erf(β/

√
2),

which diminishes rapidly with β.
In practice, not all of the noise we would like to filter

out is Gaussian. While the Gaussian distribution is a
good model for ambient environmental noise, the noise
caused by other animals and events in the environment
will not fit that model. We counter this issue in two
ways.

First, we apply a band pass filter that selects out only
the frequency range used by our target signal (in this
case, marmot alarm calls), and compute the energy met-
ric over this band. Second, by adjusting the parameters
of the smoothing filters, we select the adaptation rate
for the noise estimator such that the model will adapt
to signals that have a less abrupt onset than our target
signal.

Figure 4 shows a block diagram of our marmot de-
tection algorithm. The first three stages of the data flow
implement a windowing operation and a decimation
filter, resulting in windows of 32 points sampled at
24 kHz. To reduce the processing load, we only process
only every fourth 64 point input window. Because mar-
mot calls are approximately 0.04 s long, even skipping
3/4 of the windows we are still guaranteed to sample
the marmot call. The next two stages sum the energy
over the band of interest, by computing the Discrete
Fourier Transform (DFT) and taking the magnitude
of the sum of the frequency bins corresponding to the
range 2.25–3.75 kHz. Next, this energy metric is fed into
the marmot detector algorithm.

The energy metric feeds into the noise estimator,
gated by whether the algorithm is currently “trigger-
ing”. Whenever the detector triggers, new samples
should not be added to the noise estimator until the
signal of interest has passed—otherwise, the noise es-

a
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/2 decimation filter
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abs (F[3]+F[4])
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Ranges

Window(64,256)

Figure 4 Block diagram of a marmot detection algorithm. This
implementation is based on a similar algorithm for detecting bird
calls.

timator would tend to adapt to the signal. In addition,
there is typically a period of reverberation after an
alarm call, during which the signal levels are higher
than normal, but still below threshold. Thus, we define
a hysteresis period such that the detector will remain in
the triggered state for Kmin samples after the last above-
threshold sample. The sample ranges corresponding to
periods of triggering are reported as the output of the
detector.

The noise estimator itself is based on two Exponen-
tially Weighted Moving Average (EWMA) smoothing
filters, one estimating the mean μ, and the other esti-
mating the variance σ 2. An EWMA is a simple feed-
back function that implements a smoothing function
with very low computational complexity. The update
function for a EWMA estimate x̄ of x is

x̄t+1 = αxt + (1 − α)x̄t,

where α is the adaptation rate parameter. The detection
threshold is then computed from βσ̄ ; any sample above
threshold is considered a detection.

While this covers the “streaming” case, there are two
additional details of the algorithm: initialization and
lockup detection. When the detector starts, there is no
initial noise estimate, so the threshold cannot reliably
be determined. Thus, we implement an initialization
phase in which triggering is withheld for the first Kinit

samples while the noise estimator builds a model. The
second detail is “lockup”, a condition that can occur
in the event of a sudden but permanent change in the
noise level. If a permanent change in the noise level
causes the detector to trigger, the detector will never
un-trigger, because the noise estimates are not updated
while triggering. To address this, we apply a heuristic
that re-initializes the detector whenever triggering lasts
for more than Kmax samples.

Figure 5 shows the behavior of our on-line marmot
call detector in two cases. Figure 5a represents a period
of time in which the ambient noise level is gradually
increasing, and the mean and threshold adapt to this
change. Figure 5b shows the case where a marmot call
exists and is detected. Note that other animal calls are
present in the data, but are attenuated by the band
pass filter and easily rejected by the detector. From our
previous experience detecting birds, we expected to set
a much lower β parameter; however, after analyzing
initial recordings we found that the marmots were sur-
prisingly loud—and therefore readily detected using a
high value for β. We expect to continue to gain more
experience with this algorithm in future deployments.
We anticipate that there are a range of animal detection
applications for which it is sufficient to simply select
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Figure 5 Behavior of the
marmot alarm call detector.
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different parameter values. The parameter values used
in our implementation are given in Table 1.

3.2 AML Generalized to 3D

Approximate Maximum Likelihood (AML) is a
likelihood-based algorithm that searches the event
space for the most likely feature of the event [16].
When the source is in the far-field of the sub-array, the
event of interest reduces to a DOA bearing estimation
because the range becomes unobservable.

Suppose that we use the Cartesian coordinate system
to express the position of a point ARECT = [x, y, z]T

relative to the origin of the coordinate system O. Ac-
cording to Fig. 6, then position of APOL in the spherical
coordinate system can be expressed as A = [R, θ, E],
where

R=
√

x2 + y2 + z2, tan(θ)= y
x
, tan(E)= z√

x2 + y2
.

(1)

Table 1 Parameter values. Parameter Value

Fs 24,000 Hz
FFT points 32
Window feed 128
Frequency bins 3 or 4
α 0.999
β 32
Kinit 300
Kmin 40
Kmax 120

Now, assume that the sensor array comprises P arbi-
trarily distributed, omni-directional sensors with iden-
tical behavior. Also assume that the array is centered
at the origin. Each sensor is located at the position
rp = [xp, yp, zp]T , with 1 ≤ p ≤ P. Similarly, assume
that there are M wideband sources in the far-field of
the array and at unknown locations qm = [xm, ym, zm]T

with 1 ≤ m ≤ M. Then the relative time delay of the
mth source is given by

t(m)
cp = t(m)

c − t(m)
p

= 1

v

[(
xp cos ψm + yp sin ψm

)
cos em + zp sin em

]

= Rp

v

[
cos

(
ψm − θp

)
cos (em) cos

(
Ep

)

+ sin (em) sin
(
Ep

)]
. (2)

Note that [Rp, θp, Ep]T is the position of the pth sensor
and [dm, ψm, em]T is the position of the mth source,
both in the spherical coordinate system. t(m)

c and t(m)
p

are the absolute time delays from the mth source to
the centroid and to the pth sensor respectively, and
v is the speed of sound (nominally 345 m/s at room
temperature). The data received by the pth sensor at

Figure 6 Point A in the
spherical coordinate system.
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time t = tn, henceforth, simply denoted by the index
n, is given by xp(n) = ∑M

m=1 s(m)(n − t(m)
cp ) + ωp(n), n =

0, . . . , N − 1 where N is the length of the data vector,
s(m)(n) is the mth source signal at the array centroid,
and ωp is the zero mean white Gaussian noise with
variance σ 2. Note that in the above equation, t(m)

cp can
be any real-valued number.

The received wideband signal can be transformed
into the frequency domain via the Discrete Fourier
Transform (DFT), where a narrowband model can be
attributed to each frequency bin. It is well-known that
the circular shift property of the DFT has an edge
effect problem for the actual linear time shift. These
finite effects become negligible for a sufficient long
data. Here, we assume the data length N is large
enough to ignore the artifact caused by the finite data
length. For the N point DFT transformation, the ar-
ray data model in the frequency domain is given by
X(ωk) = D(ωk)S(ωk) + η(ωk), k = 0, . . . , N − 1, where
X(ωk) = [X1(ωk), . . . , XP(ωk)]T is the array data spec-
trum, and η(ωk) is the complex Gaussian random
vector of independent-identically-distributed (i.i.d)
components, each with zero mean and variance Nσ 2.
Note that due to the transformation to the frequency
domain, η(ωk) asymptotically approaches a Gaussian
distribution by the Central Limit Theorem, even if
the actual noise has an arbitrary i.i.d distribution with
bounded variance in the time domain. This asymp-
totic property in the frequency domain provides a more
reliable noise model than the time domain model in
some practical cases. The other terms on the right-
hand side of the last equation are steering matrix
DP×M(ωk) = [d(1)(ωk), . . . , d(M)(ωk)] and the source
spectrum S(ωk) = [S(1)(ωk), . . . , S(m)(ωk)]T . Note that
d(m)(ωk) = [e− j2πkt(m)

c1 /N, . . . , e− j2πkt(m)
cp /N]T is the steering

vector. Throughout this manuscript, we denote the
transposition and complex conjugate transposition
operations with superscripts T and H respectively.

The AML estimator performs the data process-
ing in the frequency domain. We define Q(wk) =
D(wk)S(wk). Since zero frequency bin is not important
and the negative frequency bins are merely mirror
images, we can use only the positive N/2 frequency
bins. Stacking them into a single column, we can rewrite
the sensor data into an (N P/2) × 1 space-temporal
frequency vector as

X = G(
) + ξ, G(
) = [
QT(wk), . . . , QT (

wN/2
)]T

,

Rξ = E
[
ξξ H] = (

Nσ 2) IN P/2. (3)

We assume, initially, that the unknown parame-
ter space is 
 = [r̃T

s , S(1)T

0 , . . . , S(M)T

0 ]T , where the M
source locations are denoted by r̃s = [rT

s1
, . . . , rT

sM
] and

the mth source signal spectrum is denoted by S(m)
0 =

[S(m)(w1), . . . , S(m)(wN/2)]T . So the log-likelihood func-
tion of the complex Gaussian noise vector ξ , after
ignoring irrelevant constant terms is given by

max



L(
) = max



(−||X − G(
)||2)

= min



N/2∑
k=1

||X(wk) − D(wk)S(wk)||2. (4)

This is equivalent to finding min(r̃s,S(wk)) f (wk) for each
frequency bin wk, k∈1, . . ., N

2 , where f (wk)=||X(wk)−
D(wk)S(wk)||2. The minimal of f (wk) with respect to
the source signal vector S(wk) must satisfy ∂ f (wk)/

∂SH(wk)=0. Hence, the estimate of the source signal
vector that yields the minimum residual at any source
location is given by Ŝ(wk)= D†(wk)X(wk), where
D†(wk)=(DH(wk)D(wk))

−1 DH(wk) is the pseudo
inverse of the steering matrix D(wk). Next, we define
the orthogonal projection P(wk, r̃s)= D(wk)D†(wk),
so the complement orthogonal projection becomes
P⊥(wk, r̃s) = I − P(wk, r̃s), where I is the identity
matrix. By combining the last two equations, the
minimization function becomes f (wk) = ||P⊥(wk, r̃s)

X(wk)||2. After substituting the estimate of the Ŝ(wk),
the AML source location estimate can be obtained by
finding

max
r̃s

J (r̃s) = min
r̃s

N/2∑
k=1

||P⊥(wk, r̃s)X(wk)||2

= max
r̃s

N/2∑
k=1

tr (P(wk, r̃s)R(wk)) . (5)

Note that R(wk) = X(wk)X H(wk) is the one snap-
shot covariance matrix. This multi-source AML algo-
rithm performs signal separation by utilizing the
physical separation of the sources, and for each source
signal, the Signal-to-Noise-Ratio (SNR) is maximized
in the ML sense. In general, no closed form solution
can be obtained here.

3.2.1 Single Source Scenario

Suppose we have an array consisting of P sensors,
where the array centroid is the reference point of the
spherical coordinate system. It can be shown that if we
have only one source represented with the vec-
tor [d, ψ, e]T , then the maximum likelihood crite-
rion in Eq. 5 can be simplified as maxr̃s J(r̃s) =
maxr̃s

∑N/2
k=1(X H(wk)D(wk))

2, where for the single

source case, DP×1(wk) = [e− j2πkt(m)
c1 /N, . . . , e− j2πkt(m)

cp /N]T

and the relative time delay between the centroid
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and the pth sensor would be tcp = Rp

v
[cos(ψ−θp) cos(e)

cos(Ep)+sin(em) sin(Ep)]. This form of J(r̃s) makes the
computational cost less than the original ML criterion
form in Eq. 5. Even so, a fine grain grid search for the
3D AML algorithm is still computationally intensive.
To obtain the estimated azimuth and elevation angle
using the AML algorithm via a grid search, we have to
do a search on all possible azimuth angles (from 0◦
to 360◦) and all possible elevation angles (from −90◦
to 90◦) to find the maximum J(r̃s).

3.2.2 Cramér-Rao Bound for 3D DOA

The CRB is most often used as a theoretical lower
bound for any unbiased estimator. In this section, we
derive the CRB directly from the signal model. We can
construct the FIM (Fisher Information Matrix) [16, 17]
from the signal model defined by F = 2�[HH R−1

ψ H] =
2

Nσ 2 �[HH H]. Note that H = ∂G
∂φT and φ = [ψ, e]T . G

and Rψ are already defined in Eq. 3. For the single
source, vector G can be simplified as

G(N P)/2×1 = [
e− j2π tc1/N S1(w1), . . . ,e− j2π tcP/N S1(w1), . . . ,

e(N/2)(− j2π tc1/N)S1(wN/2), . . . ,

e(N/2)(− j2π tcP/N)S1(wN/2)
]T

(6)

In this case,

F = αT, (7)

α1×1 = 2

Nσ 2

N/2∑
k=1

(
2πk|S1(wk)|

N

)2

, (8)

T =
P∑

p=1

⎡
⎢⎣

(
∂tcp

∂ψ

)2
∂tcp

∂ψ
× ∂tcp

∂e

∂tcp

∂e × ∂tcp

∂ψ

(
∂tcp

∂e

)2

⎤
⎥⎦ . (9)

As an example to see the performance of the pro-
posed 3D AML algorithm relative to the CRB, suppose
that we have a cube with a side length of 3 cm which is
centered at the origin. This cube has six side planes and
one sensor is placed in the middle of each side plane.
This 3D array with six sensors is shown on Fig. 7a. Then
the matrix ς whose columns show the position of the
corresponding sensors in the array would be

ς =
⎡
⎣

0 1.5 0 −1.5 0 0
−1.5 0 1.5 0 0 0

0 0 0 0 1.5 −1.5

⎤
⎦ . (10)

Assume our source signal is a male Dusky Antbird
call which is located at an azimuth angle of 155◦ and
an elevation angle of 60◦. Figure 7b shows the mean
square error (MSE) in degree square obtained by run-
ning the 3D AML algorithm for 1,000 different noise
realizations and compares it to the corresponding CRB
in both azimuth and elevation angles. As seen from this
figure, the 3D AML performance is very close to the
CRB and confirms the efficiency of the AML estimator
algorithm.

To reduce the 3D AML algorithm complexity, we
use the concept of isotropic and non-isotropic arrays.
An array is said to be isotropic if it has a constant mean
square angular error (MSAE) for all azimuth and all
elevation angles. Baysal and Moses [18] have proved
the following theorem which gives the necessary and
sufficient conditions for an array to be isotropic.

Theorem 1 Suppose that an P element 3D array which
is centered at the origin, is represented by the array
geometry matrix B as

B3×3 =
P∑

p=1

l plT
p , l p = rp × fs

v
, (11)

Figure 7 The cubic array
configuration and the
3D AML algorithm
performance using the
corresponding array with
source azimuth at 155◦ and
elevation at 60◦.
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where lp is the normalized location of the pth sensor in
the Cartesian coordinate system and fs is the sampling
frequency. Then the array is isotropic, if and only if B =
kI3×3 where I is the identity matrix.

It can be shown that the FIM for an isotropic array is
given by

F = α

[
k cos2(e) 0

0 k

]
, (12)

where α is the scalar defined in Eq. 8. So the CRB for an
isotropic array becomes CRB(ψ) = 1

αk cos2 e , CRB(e) =
1

αk . Now, if we remove the scaling of the CRB of the
azimuth angle, then the CRB of the elevation angle and
the CRB of the azimuth angle become equal and as
the result, the MSAE becomes constant for all azimuth
and elevation angles (MSAE(B) = cos2(e)CRB(ψ) +
CRB(e) = 2/(αk)).

Since the Fisher information matrix for an isotropic
array is diagonal, it is possible to decouple the azimuth
and the elevation angle estimation [18]; hereby, reduc-
ing processing time significantly from a 2D search to
several 1D searches. The search can employ alternat-
ing maximization technique, whereas one time we fix
the elevation angle and find the azimuth angle, and
on the other time we fix the azimuth angle and find
the elevation angle. A complete cycle of searching the
azimuth and the elevation is counted as one itera-
tion. In each iteration, the reduction in the complexity
is approximately 120/λ times less than the original
3D AML algorithm, where λ is the angular accuracy
of our DOA estimation in degree. If λ = 1◦, then the
complexity of the decoupled version of AML algorithm
is approximately 1/120 of the original 3D AML algo-
rithm. Note that the decoupling property of isotropic
arrays with an arbitrary initial point can be used only
if the isotropic array size is selected appropriately. If
the isotropic array size is not selected appropriately
then the ML criterion can have more than one peak
where one of these peaks is the global maximum and
the others are just local maximums. Then, converging to
the global maximum is not always guaranteed unless we
choose a very good initial point; one that is close to the
global maximum. Low complexity algorithms for non-
isotropic arrays exists, but since it is outside the focus
of this paper, we will omit them. Interested reader can
find more information about 3D array issues in [19].

A natural generalization for this algorithm is the
multi-source localization and tracking. The simultane-
ous vocalization of multiple species of interest is a pos-
sible reality as well as moving target when vocalizing.
Even though some of the issues has been investigated

in [20–22] and their respective references on theoret-
ical level, the complexity prevents them to approach
close to real time implementation. Further research will
be needed to optimize these algorithm for low power
devices.

4 Experiments

In this section we will describe a series of experiments
we performed July 15–20, 2006 at the Rocky Mountain
Biological Laboratory (RMBL), in Gothic, CO, and
a series of test we performed at UCLA. In RMBL,
we deployed six nodes in several locations where
marmots are normally present. One of these, “Marmot
Meadow”, is shown in Fig. 8. We tested the perfor-
mance of our marmot detector and the AML-based
source localization under realistic field conditions,
detecting real animals as sources. We also performed a
controlled test of the sensitivity of the AML estimator
to distance and source orientation, using pre-recorded
audio for 2D analysis in the same field environment.
For 3D DOA accuracy test, we conducted the exper-
iment at UCLA with pre-recorded bird calls at dif-
ferent elevated locations. Then we performed a set
of controlled experiments on a grassy field at UCLA
using pre-recorded marmot calls and a white noise
as audio source. In this test, we deployed six nodes
and the source at a predetermined location, and we
place the source at two typical positions: (1) inside and
(2) outside the array convex hull.

Figure 8 “Marmot Meadow” location at Rocky Mountain
Biological Laboratory, in Gothic, Colorado. The node locations
correspond to the wide deployment described in Section 4.5.
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4.1 Marmot Detector Performance

To test the performance of the marmot detector, we
ran the detection software on a network of five nodes.
This software implemented the algorithm described in
Section 3.1, running in real time. Whenever a detection
range (the beginning and ending of the signal) was
determined, that range was broadcast to all nodes in
a packet. The ENSBox’s integrated synchronized sam-
pling API was used by this application to synchronously
record segments of audio corresponding to the detec-
tion range on every node in the system. These snippets
were then stored to flash for further processing.

After the test, the results were compared with field
notes taken during the experiment. Figure 9 shows the
result of this comparison. Several nodes detected every
call present, and a few nodes reported false alarms.
Node 106 was not functioning properly and only re-
ported false alarms. As we saw in Fig. 5b, marmot calls
are very loud and the detector had very little trouble
identifying them. In fact, most of the false alarms were
introduced by researchers walking through the field
manipulating the nodes.

4.2 2D DOA Accuracy Testing

Real animals move their heads while vocalizing. To
assess the consistency of DOA estimates from a sin-
gle sub-array in the field when the source’s direction
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Figure 9 Performance of the marmot detection algorithm from
20 min of audio. The deployment laydown was similar to the
compact deployment described in Section 4.4. For each node, the
bars show the number of correct detections, missed detections,
and false alarm. Note that if any node detects, all nodes will
capture that call.

changes, we conducted a series of playback tests. The
source was a marmot call broadcast from a powered
speaker (Advent 570 Powered Partner) in the same
meadow site where live marmot experiments were con-
ducted. This speaker reproduces the calls faithfully,
though at a significantly lower volume than marmots
naturally produce.

A single node was placed as it was for the live
marmot experiments, with the sub-array raised approx-
imately 1.5 m above ground level. The source was
aligned by eye at a bearing of approximately 180◦
relative to the coordinate system of the sub-array. The
source marmot call was repeated 15 times during each
playback experiment.

The playback was repeated with the source at three
different distances from the sub-array: 12.5, 25, and
50 m. We also rotated the direction the source speaker
was facing to test any possible effect that may have,
since marmots often turn their heads between or even
during a call. Three speaker facings were done at each
distance: pointing directly at the sub-array, pointing
perpendicular to the sub-array, and pointing away from
the sub-array.

We applied the AML algorithm to a 0.07 s segment
of each marmot call, 135 trials in total. The algorithm
was limited to a 1 kHz band of frequencies centered
on 3 kHz, which is a typical range over which mar-
mot calls have their maximum power. The results are
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Figure 10 Results from a set of controlled DOA experiments
in the field. A speaker was placed on the ground in a meadow
at a set of specified distances (12.5, 25, and 50 m), and oriented
to face either towards, perpendicular, or away from the array.
Fifteen trials were performed in each configuration. The results
above show the nine cases tested: each row of images is a different
distance; each column a different facing of the source speaker.
In each image, a row represents a separate trial, showing the
likelihood metric as a function of angles.
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Figure 11 Histograms of the maximum DOA estimates for the
same data shown in Fig. 10, grouped by distance and grouped by
source facing. Each plot shows mean μ ± the standard deviation
and the median m.

shown in Fig. 10, where each subplot shows the AML
estimates at each bearing for a different experimental
condition. The side lobes common in all the figures
are due to the array geometry effects explained in
Section 2.2. The peculiar side lobes such as in trial 6 at
12.5 m are due to background noises, especially White-
crowned Sparrows whose calls overlap marmot calls in
frequency.

Figure 11 shows the statistical distribution of DOA
estimates (the bearing with the maximum AML value
for each trial). For all the data combined, the mean
DOA estimate is 173.55 with a standard deviation
of 2.35◦. Distance from the source and the facing of

the source have a significant effect on precision. The
dominant effect appears to be the power of the signal
arriving at the sub-array. As distance increases, the
power of the signal drops. In addition, there is a large
drop in power when the speaker faces perpendicular to
or away from the sub-array. In our experimental setup,
speaker direction caused a larger drop than distance
(data not shown).

4.3 3D DOA Accuracy Testing

To test the effectiveness of the proposed 3D meth-
ods in a relatively non-open environment, we con-
ducted various experiments in the central courtyard of
UCLA Boelter Hall. The experimental location was
surrounded by four sides of the tall quadrangle build-
ings, in addition to some trees and bushes. There was
a persistent noise from ventilation systems of the sur-
rounding buildings, and there was also a wind from the
air flowing in between the buildings. The surrounding
buildings causes reverberation that is further enhanced
by the presence of trees. In order to manage these in
the deployment, we place the three nodes within the
source’s line of sight and as far apart from each other
as physically possible. The location of the experiment
and the acoustic arrays are shown in Figs. 12 and 13.

We have three arrays denoted as node 151, 152 and
153. Each array consists of four microphones positioned
at four corners of a cube with side length of 8 cm. The
picture of one of the arrays and its isotropic configu-
ration is shown in Fig. 13. The subarrays are placed at
least 5 m apart. At the time, we rely only on a compass
to orient our array with reliability within 2–4◦. The
loss in accuracy is mainly from the mitigation effort
from the magnetic element effect in the speaker when
reading the compass. A computer speaker is positioned
at different floors to simulate different elevation angles

Figure 12 3D DOA accuracy
testing experiment performed
at the Boelter Hall in UCLA.
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Figure 13 3D DOA accuracy testing experiment setup.

that will playback the pre-recorded audio source. The
audio file is 23 s long and consists of several repeating
Acorn Woodpecker and Mexican Antthrush calls. The
data collected by each node is then processed using
3D AML algorithm to get the DOA estimate. Note that
since the array size is 8 cm and the bird calls are mostly
between 2 and 5 kHz, then the ML criterion would have
several large lobes. So the decoupled 3D AML with an
arbitrary initial point can’t be used to process the col-
lected data. Since the original 3D AML algorithm does
2D grid search on all possible azimuth and all possible
elevation angles, it is not very efficient. A more efficient
solution is to run the decoupled 3D AML algorithm
with more than one initial point and then compare the
obtained maximum from each initial point and select
the global maximum. The required number of initial
points to guarantee converging to the global maximum
is completely dependent on the isotropic array configu-
ration and the frequency characteristics of the signal of
interest. For the specified isotropic array configuration
and the audio calls used in these experiments, having
five initial points (with the elevation angles of 5, 25,

45, 65 and 85 in degrees) guarantee to find the global
maximum. This way, we would still have low complexity
and good performance.

For the first test, we placed the speaker on the first
floor of Boelter Hall with height of 5.2 m. We processed
the received signal from each subarray using the pro-
posed 3D AML algorithm discussed in Section 3.2. As
a result, we were able to estimate an azimuth angle and
an elevation angle for each of the calls. Table 2 shows
the mean and the standard deviation of the angular
error for each node in degrees. For the first experiment,
we lost node 153 due to a technical problem, so we only
have data collected from the two other nodes. In the
second and third experiments, the speaker is located on
the second and third floor of the Boelter Hall with the
height of 9.37 and 13.47 m, respectively.

Note that some of the results are biased, especially
the results from node 151. We believe this bias is caused
by array orientation error which we know only accurate
within a few degrees. The rest of the tables show that
the estimated DOAs are fairly close to the true DOAs,
which is especially true for elevation angle estimates.
This confirms the practicality of the proposed 3D AML
algorithms in real life scenario.

4.4 AML Localization, Compact Deployment

The goal of this experiment is to verify whether the
system is capable of performing source localization
based on actual animal calls in the field by performing
properly all the features of node time synchroniza-
tion, self-localization of the nodes, event detection, and
AML-based DOA bearing estimation as considered
above.

The setup of the system was as follows. Six sub-
array nodes were spread over a region which surrounds
the “Spruce Burrow”, a location where most marmots
alarm-called. Figure 14 shows the location of Spruce

Table 2 Angular error’s
mean and standard deviation
for various source elevation.
The entry (a,b)/(c,d)
represents a and b as mean
and standard of azimuth
angle, c and d as means and
standard deviation of
elevation angle, and all units
are in degree.

Node Mean/Std. dev. (Azim., Elev.) degree

Acorn woodpecker Mexican antthrush

5.2 m above ground
151 (−0.36, 1.39)/(0.4, 1.01) (−0.49, 2.29)/(1.93, 1.35)
152 (2.60, 2.95)/(0.74, 1.78) (−1.47, −1.3)/(2.92, 3.73)

9.37 m above ground
151 (−1.53, −2.68)/(1.41, 0.74) (2.36, −1.26)/(1.37, 1.52)
152 (1.47, 1.42)/(1.18, 0.82) (2.69, −1.44)/(2.38, 1.82)
153 (−0.09, −0.01)/(1.69, 1) (−3.21, 2.03)/(2.8, 0.22)

13.47 m above ground
151 (−2.59, −1.44)/(1.75, 0.95) (−3.4, −3.9)/(1.98, 1.4)
152 (−3.68, 0.62)/(3.05, 0.46) (−3.2, −1.2)/(3.3, 2.21)
153 (−1.55, 0.93)/(2.03, 0.87) (2.4, 2.09)/(8.07, 0.53)
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Figure 14 Compact deployment comparison between node self-
localization and GPS data. GPS position is denoted by round
circles connected in a solid line. Top and bottom numbers pair
are self-localization and GPS distances respectively.

Burrow relative to the sensor nodes. To align the po-
sition and orientation of the nodes relative to the true
Earth, we took three GPS readings on node 110, 108
and 105. Although two was sufficient, three enhanced
our confidence. Figure 14 was made by translating node
110 GPS and self localization position on top each other
and rotating node 110 to 108 GPS orientation to fall
onto the self localization orientation. On each line the
top numbers is the distance based on GPS coordinate,
and the bottom is based on self localization. We know
our self localization accuracy is within 5 cm in the open
field [12]. The small difference between these numbers
indicate that the GPS result is accurate well within its
accuracy in the open field, which is about 1 m.

The position of the source is estimated using a
pseudo-likelihood map. This map is generated in the
following way. Each node runs the AML algorithm on
the marmot calls to produce the bearing likelihood.
Then, the 2D map is divided into uniform grid of
positions, where the pseudo-likelihood of each position
is computed by summing the bearing log-likelihood
values of each nodes that points to that position. The
estimate is chosen based on the most likely position.
Figure 15 displays the pseudo-likelihood map with the
bearing likelihood of each node in a polar coordinate.

In this experiment, error analysis is difficult to ad-
dress. The marmots rarely call at the same location,
and their position when making the calls is difficult
to precisely record. Figure 15 displays the estimate in
relation with the nodes and the burrow. This result
is consistent with the notes made at the field, which
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Figure 15 A pseudo-likelihood map from the compact deploy-
ment. Main lobes are denoted by the circle on the log-likelihood
ring, and the solid dots on these rings are the array zero-degrees.

can only indicate that a marmot was observed nearby
the burrow. More analysis can only be done if caller
localization can be improved by ground truth, or if the
marmot doesn’t move while making several calls; this is
what happened next.

4.5 AML Localization, Wide Deployment

Our goal in this experiment was to investigate the
limiting capability of the system by stretching the array
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Figure 16 Wide deployment comparison between node self-
localization and GPS data. GPS position is denoted by round
circles connected in a solid line. Top and bottom numbers pair are
self-localization and GPS distances respectively.
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ployment, relative to the position of the node 104 using all six
nodes. μ = (82.1, 11.1), and σ = (2.9, 5.6) m denoted by square
with cross hairs. Median is denoted by a triangle.

as large as the wireless link allows while performing
the same task. Fortunately, the marmots chirps more
frequently at a single spot, thus gives us opportunity to
address more detailed error analysis.

The array setup was similar to the compact deploy-
ment except the distance between nodes, which was
enlarged with the longest distance from node 104 to 106
spans 143.6 m. Similarly, to orient the node with respect
to true Earth, we take three GPS readings on node
100, 104 and 108. Figure 16 displays the node positions
according to self-localization and GPS coordinates, by
aligning the corresponding points for nodes 100 and
104. In this analysis we encountered an interesting
problem: as the graph clearly shows, the GPS and self-
localization results show a discrepancy in which the
position of node 108 differs by 10 m. Unfortunately, this
problem was not discovered until we had packed up the

equipment and left the field location, so we could not
collect additional GPS data. At first, this might seem
like a fatal error because we don’t know which GPS
value to rely to align self localization results to the true
Earth. However, based on the estimated call positions,
the burrow location and because the self-localization
results are derived from an over-constrained system, we
were able to produce a convincing argument that the
GPS value for node 108 was flawed.

The marmot rapid, cyclic mode, chirping is called a
bout, with one chirp every few seconds. In this type
of behavior the marmot stands still while vocalizing,
although it may move its head around to scan the
surrounding area. This means we can use these data
set to get the estimate distribution produced by our al-
gorithms. With the estimation process follows a similar
procedure as before, we generate the pseudo-likelihood
map for each chirp and use 0.1 s duration in processing.
Each estimated position is then collected and plotted in
a scatter plot as seen in Fig. 17. The estimated positions
are arranged in grayscale gradient from dark to light
representing the progression in time from earlier to
later event. To simplify computation, we divide the
map into a square grid with a specified precision. The
precision of the map we choose is 0.1 m, hence any-
thing that falls within the 0.1 × 0.1 square is treated as
the same location. In the graph, we indicate multiple
estimates by making the dot size larger. The mean and
standard deviation is shown as the square and the cross
hairs, and the median is shown as triangle. The plot
axis are set relative to node 100 and the mean (μ) and
standard deviation (σ ) are (82.1, 11.1) and (2.9, 5.6) m
respectively.

The scatter plot has a “banana” shape that suggests
the presence of correlated errors. Examining the results
from nodes 108 and 106, we observed that the bearing

Figure 18 A time domain
segment containing a single
marmot chirp from two nodes
at different locations from the
wide deployment.
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Figure 19 Scatterplot of
location estimates from wide
deployment after removing
node 108 and 106. μ = (82.6,
14.2), and σ = (1.4,2.8) m
denoted by square with cross
hairs. Median is denoted by a
triangle.
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likelihoods reported by these nodes have broad, mis-
shapen lobes that introduced error into the position
estimate. Figure 18 shows time domain plots of one
particular chirp recorded at nodes 108 and 110. From
these plots it is clear that the data recorded at 110
is quite clean, whereas at 108 there was a great deal
of distortion. We believe that this distortion is mainly
caused by reverberation from trees. Generally, nodes
that are closer to trees would be more susceptible to

this problem. In addition, nodes close to the source can
contribute more dispersion because their side-lobes are
more likely to intersect near the true source location.

In Fig. 19a, we show the results of our localization
after removing data from 108 and 106. This results in
a tighter distribution, with mean (μ) (82.6, 14.2) m and
standard deviation (σ ) (1.4, 2.8) m. Clearly the sensors
that are affected by reverberation yield poor estimate,
and by selecting sensors that aren’t affected, we can

Figure 20 Scatterplot of
position estimates for source
inside the convex hull. For
marmot, μ = (39.01, 15.59),
and σ = (0.03,0.09) m. For
noise, μ = (15.87, -38.03), and
σ = (0.04, 0.03) m. μ and σ

are denoted by square with
cross hairs respectively.
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Figure 21 Scatterplot of
position estimates for source
inside the convex hull. For
marmot, μ = (-24.92, 12.30),
and σ = (0.47, 0.22) m. For
white noise, μ = (−27.10,
13.68), and σ = (0.18, 0.08) m.
mu and σ are denoted by
square with cross hairs
respectively.
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minimize the variance of our estimate. A seemingly
more reasonable approach is to apply multi-source es-
timation algorithm to estimate both the source and its
reverberation. For this approach, the AML is equipped
to do so [16]; however, the computation complexity
can be impractical to implement in a sensor node with
limited computational power. To asses this problem,
our future work will investigate methods for automati-
cally selecting nodes that achieves minimum variance,
and investigate low complexity algorithms to handle
reverberant case.

Figure 19b shows a zoomed-in version of Fig. 19a.
Here we see there are two cluster of dots, one on the
upper left and another on the bottom right. Confir-
mations from notes revealed that there are truly two
call locations of the same marmot observed in this test
(nicknamed “Smiley Face”).

4.6 AML Localization, UCLA

In this experiment our goal is to characterize the per-
formance of both localization and direction of arrival
accuracy that are missing in RMBL from the lack of

ground truth. However, we do not want to remove the
self-localization step to test the accuracy of AML alone.
Since we know the self-localization position estimate
is accurate within 5 cm in the open field, we can use
an extra node that can act both as a source and par-
ticipate in the self-localization to get its positions. We
further confirm this readings by measuring distances to
surrounding nodes using a laser ranger. We also test
two source positions that typically represents the usual
deployment scenario: (1) when the nodes deployed
are able to surround the source or inside the convex
hull (ICH) of the nodes deployed, and (2) when the
deployment cannot surround the target of interest or
outside the convex hull (OCH), usually due to physical
limitations such as wireless link, or GPS that performs
better in the open area.

Table 3 Summary of position error statistics for each cases.

Case Mean Std. dev. RMS dist.

ICH Marmot (39.01, 15.59) (0.03,0.09) 0.78
ICH Noise (38.27, 15.31) (0.02,0.04) 0.35
OCH Marmot (−24.92, 12.30) (0.47, 0.22) 2.07
OCH Noise (−27.10, 13.68) (0.18, 0.08) 0.61
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Table 4 Summary of angular
error statistics for each node.

Case 103 104 108 109 112 115

Mean
ICH Marmot −0.83 0.47 1.44 −2.69 3.50 1.43
ICH Noise −0.03 1.51 −0.51 −0.54 −0.59 −0.19
OCH Marmot 1.19 2.40 3.71 3.13 −0.21 0.93
OCH Noise 2.24 2.46 2.11 1.49 −0.05 −1.34

Standard deviation
ICH Marmot 0.23 0.49 0.13 0.07 0.27 1.12
ICH Noise 0.08 0.36 0.11 0.08 0.10 0.38
OCH Marmot 0.30 0.33 0.32 0.17 0.35 0.36
OCH Noise 0.34 0.19 0.44 0.47 0.13 0.25

Six nodes are deployed in a rectangular manner with
each vertical pair faces each other. The nodes are raised
up approximately 1.2 m above the ground and leveled
with a water bubble leveler. Seven vertical and horizon-
tal distances are measured with a laser distance ranger,
and the orientation with a compass. At each source we
played both a white noise and a series of pre-recorded
marmot chirps. Each analysis is using 0.1 s data that is
passed to a high pass filter to remove the low frequency
wind and humming noise. For the marmot analysis
the data is band pass filtered at marmot’s dominant
frequency to remove high frequency interferers such as
crickets.

Figure 20 display the scatter plot of the inside convex
hull case with pre-recorded marmot call playback. The
dots shows 40 position estimates, and the beam patterns
are taken from the last estimate. The cross represents
the source position at (38.24, 15.65) m. The mean and
standard deviation of the estimates are (39.01, 15.59)
and (0.03,0.09) m respectively and are represented by
the square and the crosshair. The root-mean-square
(RMS) distance error is 0.78 m. Given the tightness of
the standard deviation, the estimate has a slight bias.
It seems at first that this is caused by orientation error
in the self-localization, but several fact that against
this is first the white noise analysis shown in Fig. 20c
shows better and consistent estimates. Furthermore,
the individual node angular error of white noise source
does decrease as shown in Table 4; therefore cannot
be dismissed as coincidence. We also investigate the
non-uniform SNR across sensors, and when we re-
move a sensor that has low SNR, the angular error
change is still within one standard deviation. Upon
correlating the data with the original signal we found
two high peaks that consistent if a reverberant comes
from the nearest buildings, but processing the data
before the reverberant arrives also resulted in angular
change within one standard deviation. Another possi-
bility is reflection from the ground which translates to

10–15 samples delay which is difficult to detect. Since
the sensor arrangement are 3D, the non-perfect tilt-
ness can also contribute to this bias. Furthermore, all
the imperfection from self-localization result may also
add up.

For marmot source outside the convex hull, the
position estimate suffers from not having total beam
crossings greater than 90◦. The estimate resulted in
a mean of (−24.92, 12.30), standard deviation (0.02,
0.04) m, and RMS distance error of 2.07 m, where the
actual position from self-localization is (−26.55, 13.46)
m (Fig. 21). Viewing the angular error from Table 4
reveals that neither the marmot case and the white
noise case are very accurate. However, the white noise
angular error happens to cancel each other giving RMS
distance error of 0.61 m.

Summaries of these results can be seen in Tables 3
and 4. Very tight variances indicates the AML algo-
rithm produces repeatable and consistent estimates.
These results suggest that for inside the convex hull,
we can get accuracy less than 1 m, and the accuracy for
outside convex hull is around 2 m. Given the size of this
array deployment is approximately 35 × 65 m, the error
ratio to the smaller side is 2.9% and 5.7% respectively.

5 Conclusion

The ability to deploy an automated system to detect,
localize, and record animal vocalizations in the field
enables a host of new observations and approaches to
biological questions. The successful deployment of the
Acoustic ENSBox based system at the Rocky Mountain
Biological Laboratory to study marmot alarm calls pro-
vides a powerful proof of concept. Our results indicate
that it is tractable to localize marmot alarm calls to
within at least a few meters, despite a noisy and geo-
graphically rough environment.
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The self-localization feature of the Acoustic ENS-
Box nodes is a necessity for practical field deployment.
This capability provides a robust and high-accuracy
alternative to reliance on GPS and simple distance
measurements. When combined with GPS and distance
measurements, the different measurement modes pro-
vide invaluable error and consistency checking, as well
as providing calibration to the speed of sound and
registration of the node map with respect to global co-
ordinates. Given the unexpected vagaries encountered
in the field and the difficulty of always checking values
in real time, independent redundant measurements are
extremely valuable.

The tests of the on-line marmot detector demon-
strated that a streaming detector could be developed
quickly and deployed on the ENSBox nodes without
excessive optimization. Demonstrating in-network data
reduction, we showed that this detector could pre-
filter the data to meet the requirements of on-line
localization algorithms which cannot run streaming in
real time. Our experience also motivated the need
for interactive development in the field. We anticipate
that in future deployments: (1) initially, samples of
raw data will need to be collected and analyzed, and
(2) parameters—and in some cases, algorithms—will
need to be tuned in the field in response to the par-
ticular conditions observed in the deployment. We are
currently pursuing an interactive, query-oriented ap-
proach to these needs in the context of the WaveScope
project [23].

Our controlled experiments with 2D AML based
bearing estimation showed that pre-recorded playback
tests under actual field conditions produces results con-
sistent to within a few degrees out to 50 m, even though
the volume of playback is significantly lower than a
live marmot call. This result is especially encouraging
since in the most extreme case with the source speaker
facing away from the sub-array 50 m away, the call itself
is nearly inaudible over the background noise to the
human ear. The 3D AML based bearing estimation also
shown to have satisfactory results despite the low array
azimuth orientation accuracy.

Source localization experiments of actual marmots
in their natural environment proved quite successful.
Combining AML based DOA likelihoods from multi-
ple nodes effectively overcomes the problem of ambi-
guity produced from a relatively large sub-array size.
As demonstrated by the wide deployment experiment,
redundancy provided by multiple nodes can be used to
identify and exclude sub-arrays which have especially
poor data due to reverberations, multi-path, or other
practically unavoidable problems.

Finally, a controlled source localization experiment
proved the system to be very consistent and accurate
within a few meters. Redundancy in the measurements
has provide convincing case for node position and ori-
entation accuracy.

Continued development of this system will further
reduce its size and weight, make it more weather re-
sistant, and increase its sensitivity and accuracy. Up-
coming field applications include further work with
marmots at RMBL to test hypotheses regarding selfish-
ness and trust when making and responding to alarm
calls. The 3D array analysis, design, simulation, and
experimental measurement at UCLA discussed in the
paper are all aimed for our future deployment to study
tropical birds in the rainforests of Chajul, Mexico.

Acknowledgements The authors would like to thank Chiao-
En Chen, Wei-Ho Chung, and Yuan Yao for assistance in data
collections at UCLA, Vlad Trifa and Martin Lukac for providing
feedbacks on a draft of this paper, and RMBL for hosting us
during the experiment. The authors would also like to thank the
reviewers for their time and constructive suggestions. This work
is partially supported by National Science Foundation (NSF)
Center of Embedded and Network Sensing program under Coop-
erative Agreement CCR-012, NSF grant EF-0410438, University
of California Discovery grant sponsored by ST Microelectronics,
a UCLA faculty research grant to DTB, and the MIT WaveScope
project (NSF).

References

1. Bradbury, J., & Vehrencamp, S. (1998). Principles of animal
communication. Sunderland: Sinauer.

2. McGregor, P., Peake, T., & Gilbert, G. (2000). Commu-
nication behavior and conservation. In L. Gosling, & W.
Sutherland (Eds.), Behaviour and conservation (pp. 261–280).
Cambridge: Cambridge University Press.

3. Blumstein, D. (2007). The evolution of alarm communication
in rodents: Structure, function, and the puzzle of apparently
altruistic calling in rodents. In J. Wolff, & P. Sherman (Eds.),
Rodent societies. Chicago: U. Chicago Press.

4. Hall, M. L. (2004). A review of hypotheses for the functions
of avian duetting. Behavioral Ecology and Sociobiology, 55,
415–430.

5. Blumstein, D. T., & Armitage, K. B. (1997). Alarm calling in
yellow-bellied marmots: The meaning of situationally-specific
alarm calls. Animal Behavior, 53, 143–171.

6. Blumstein, D. T., & Munos, O. (2005). Individual, age and
sex-specific information is contained in yellow-bellied mar-
mot alarm calls. Animal Behavior, 69, 353–361.

7. Blumstein, D. T., & Daniel, J. C. (2005). Yellow-bellied
marmot discriminate between the alarm calls of individuals
and are more responsive to the calls from juveniles. Animal
Behavior, 8, 1257–1265.

8. Vilches, E., Escobar, I., Vallejo, E., & Taylor, C. (2006). Data
mining applied to acoustic bird species recognition. Interna-
tional Conference on Pattern Recognition, 3, 400–403.



434 J Sign Process Syst (2009) 57:415–436

9. Trifa, V., Girod, L., Collier, T., Blumstein, D. T., &
Taylor, C. E. (2007). Automated wildlife monitoring using
self-configuring sensor networks deployed in natural habi-
tats. In The 12th international symposium on artificial life and
robotics (AROB).

10. Girod, L., Lukac, M., Trifa, V., & Estrin, D. (2006). The
design and implementation of a self-calibrating distributed
acoustic sensing platform. In ACM SenSys. Boulder, CO.

11. Wang, H., et al. (2005). Acoustic sensor networks for wood-
pecker localization. In SPIE conference on advanced sig-
nal processing algorithms, architectures and implementations,
5910, 591009.1–591009.12.

12. Girod, L. (2005). A self-calibrating system of distributed
acoustic arrays. Ph.D. thesis, Univerity of Caliornia at Los
Angeles.

13. Elson, J., Girod, L., & Estrin, D. (2002). A wireless time-
synchronized COTS sensor platform, part i: System architec-
ture. In IEEE CAS workshop on wireless communications
and networking.

14. Girod, L., et al. (2004). Emstar: A software environment for
developing and deploying wireless sensor networks. In Pro-
ceedings of the 2004 USENIX technical conference. USENIX
Association, Boston, MA.

15. Trifa, V. (2006). A framework for bird songs detection,
recognition and localization using acoustic sensor networks.
Master’s thesis, École Polytechnique Fédérale de Lausanne.

16. Chen, J., Yao, K., & Hudson, R. (2002). Maximum-likelihood
source localization and unknown source localization estima-
tion for wideband signals in the near-field. IEEE Transactions
on Signal Processing, 8, 1843–1854.

17. Kay, S. (1993). Fundamentals of statistical signal processing:
Estimation theory. New Jersey: Prentice-Hall.

18. Baysal, U., & R.M. (2003). On the geometry of isotropic
arrays. IEEE Transactions on Signal Processing, 51(6), 1469–
1478.

19. Asgari, S., Ali, A., Collier, T., Yao, Y., Hudson, R., Yao, K.,
et al. (2007). Theoretical and experimental study of doa esti-
mation using aml algorithm for an isotropic and non-isotropic
3d array. In SPIE conference on advanced signal process-
ing algorithms, architectures, and implementations. SPIE,
(vol. 6697, pp. 66970I-1–66970I-12).

20. Chen, C. E., Wang, H., Ali, A. M., Lorenzelli, F., Hudson,
R. E., & Yao, K. (2006). Particle filtering approach to local-
ization and tracking of a moving acoustic source in a rever-
berant room. In IEEE ICASSP06.

21. Chen, C. E., Ali, A. M., Wang, H., Asgari, S., Park, H.,
Hudson, R. E., et al. (2006). Design and testing of robust
acoustic arrays for localization and enhancement of several
bird sources. In Symposium on information processing in sen-
sor networks (IPSN06) (pp. 268–275). ACM Press.

22. Chen, C. E., Lorenzelli, F., Hudson, R. E., & Yao, K. (2008).
Maximum likelihood DOA estimation of multiple wide-
band sources in the presence of nonuniform sensor noise.
EURASIP Journal on Advances in Signal Processing, 2008,
12. doi:10.1155/2008/835079.

23. Girod, L., Jamieson, K., Mei, Y., Newton, R., Rost, S.,
Thiagarajan, A., et al. (2007). The case for WaveScope:
A signal-oriented data stream management system (posi-
tion paper). In Proceedings of third biennial conference on
innovative data systems research (CIDR07) (pp. 397–406).

Andreas Mantik Ali received his B.S. (Highest Honors) and M.S.
degrees in Electrical Engineering from University of California,
Los Angeles. He is currently a Ph.D. candidate under advisory of
Professor Kung Yao and in close collaboration with the Center
for Embedded Network Sensors. His research interests include
source localization, array processing, multiple target tracking and
wireless sensor networks.

Shadnaz Asgari received her B.S. degree in Electrical Engineer-
ing from Sharif University of Technology in 1999. Since 2002 she
has been a graduate student in the University of California, Los
Angeles (UCLA) where she is currently doing research under
the Prof. Yao’s supervision. Her areas of interests include array
signal processing, source localization and beam-forming in the
sensor networks.

http://dx.doi.org/10.1155/2008/835079


J Sign Process Syst (2009) 57:415–436 435

Travis C. Collier holds a B.S. in Engineering and Applied
Sciences from Caltech, and is currently a graduate student re-
searcher in Ecology and Evolutionary Biology at UCLA in close
collaboration with the Center for Embedded Network Sensors.
His research interests have included Artificial Life, population
modeling, self-organizing systems, language evolution, and sen-
sor networks.

Michael Allen received the B.S. degree in Computer Science
from Coventry University, UK in 2005. He is currently a Ph.D.
student with the Cogent Applied Research Centre at Coventry
University, under the supervision of Dr. Elena Gaura. His re-
search interests include source and node localization in wireless
sensor networks.

Lewis Girod received the B.S. and M.E. degrees in Computer
Science from MIT in 1995. He received his Ph.D. in Com-
puter Science from University of California at Los Angeles in
December 2005. After working at LCS for 3 years in the area
of Internet naming infrastructure, he joined Deborah Estrins
group in 1998. He is currently working as a Postdoctoral Re-
searcher at the MIT Computer Science and AI Laboratory, on
the WaveScope project. His research focus is the development
of robust networked sensor systems, specifically physical local-
ization systems that use multiple sensor modalities to operate
independently of environment and deployment.

Ralph E. Hudson BSEE, UC, Berkeley, 1960, Ph.D. US Naval
Postgraduate School, 1966. US Navy 1960 to 1973 naval aircraft
electronic warfare systems. Hughes Aircraft Co. 1973 to 1993
airborne radar digital signal processing. Consultant and research
associate at UCLA, 1993 to present. Research interest signal and
array processing and synthetic array radar system design and
signal processing.



436 J Sign Process Syst (2009) 57:415–436

Kung Yao received his B.S. (Highest Honors) and Ph.D. degrees
in Electrical Engineering from Princeton University. Presently,
he is a Distinguished Professor in the Electrical Engineering
Dept. of UCLA. He was an Assistant Dean at the UCLA
School of Engineering and Applied Science from 1985 to 1988.
From May to June 2007, he was a Royal Society Kan Tong Po
Visiting Professor at HK Polytechnic Univ. His research interests
include acoustic/seismic array processing, sensor system, wireless
communication theory and system, and systolic array algorithm
and systems. He has published over 250 journal and conference
papers. Dr. Yao received the IEEE Signal Processing Society’s
1993 Senior Award in VLSI Signal Processing. He has served
as Associate Editors of IEEE Trans. on Information Theory,
IEEE Trans. on Signal Processing, IEEE Trans. on Circuits and
Systems, IEEE Communication Letters, etc. He is a Life Fellow
of IEEE.

Charles E. Taylor received his A.B. from the University of
California, Berkeley in Genetics and his Ph.D. in Ecology and

Evolution from the State University of New York, Stony Brook.
Presently, he is a professor of Ecology and Evolutionary Biology
at UCLA. He was co-director of the UCLA Cognitive Science
Research Program from 1991 to 1999. His principle research
areas are: (1) in adaptive sensor arrays, used to identify and lo-
calize birds—an outgrowth of his background in artificial life; and
population genetics of Anopheles gambiae, the principal vector of
malaria throughout much of Africa. Prof. Taylor has been a co-
editor of 3 books and an author of 125+ articles and conference
papers. He has served as co-editor of the journal Artificial Life
(MIT Press) from 1997 to 2001, and has been a member of the
editorial boards of Artificial Life, High Integrity Systems, IEEE
Transactions on Evolutionary Computation, Artificial Life and
Robotics and of the International Journal of Distributed Sensor
Networks.

Daniel T. Blumstein is an Associate Professor of Ecology and
Evolutionary Biology at UCLA. He received his B.S. (Magna
Cum Laude—Environmental, Population and Organismic
Biology; Cum Laude—Environmental Conservation) from the
University of Colorado Boulder, and his M.S. and Ph.D. in
Animal Behavior at the University of California Davis. He has
studied alarm communication and bioacoustics in marmots for
nearly two decades, and has written over 150 articles and book
chapters, and two books, about these and other subjects. He is
an Editor of the journal Animal Behavior, and on the editorial
boards of Behavioral Ecology, and Biology Letters.


	An Empirical Study of Collaborative Acoustic Source Localization
	Abstract
	Motivation
	Overview of Approach
	DOA-based Localization Using Sub-arrays
	Performance Impact of Sub-array Size
	Implementation of the Sub-array Nodes

	Algorithms
	Marmot Event Detector
	AML Generalized to 3D
	Single Source Scenario
	Cramér-Rao Bound for 3D DOA


	Experiments
	Marmot Detector Performance
	2D DOA Accuracy Testing
	3D DOA Accuracy Testing
	AML Localization, Compact Deployment
	AML Localization, Wide Deployment
	AML Localization, UCLA

	Conclusion
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


