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MULTIVARIATE ANALYSIS OF GOLDEN MARMOT MAXIMUM RUNNING

SPEED: A NEW METHOD TO STUDY MRS IN THE FIELD!

DANIEL T. BLUMSTEIN

Animal Behavior Graduate Group, Department of Zoology, University of California, Davis, California 95616 USA

.

Abstract. 1 develop a multivariate technique permitting the study of variation in the
maximum velocity of animals. The method was applied to study maximum running speed
(MRS) of adult golden marmots (Marmota caudata aurea). Subjects were encouraged to
run to home burrows after being livetrapped, and were timed while running over arandomly
selected distance between 1.7 and 36.0 m. Body mass, sex, distance run, substrate, and
incline the individual ran across for 52 different subjects were entered into a linear model,
which implicitly modeled MRS as a function of the running time. Body mass did not
significantly explain variation in running time and was deleted. A new model fitted to the
remaining variables significantly explained variability in time, and therefore MRS. The
model did not violate any of the assumptions of linear models, and appeared to be robust.
Intrayear repeatability of individual MRS was small, suggesting that environmental factors
may account for much of the variation in MRS in golden marmots. The model predicts
that the four significant variables (sex, distance run, substrate, incline) should influence
space use and patch selection in golden marmots since they influence the speed at which
an alarmed marmot can reach a refuge. The general method developed here can be applied
to other species and should shed light on patch use and foraging behavior of refuging

species.
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INTRODUCTION

Many animals use refugia to escape predators. For
instance, some birds may fly to a bush, fish may swim
beneath an overhanging rock, insects may retreat to a
hole. and ground squirrels may enter burrows when
being pursued by a predator. The behavior of these
animals may be described as being patterned in space
around their refugia (e.g., Barash 1973, Frase and Ar-
mitage 1984). For refuging animals, the estimated min-
imum time it would take them to return to a refuge
from a point in space should be an important factor
that influences how they use their habitat (sensu Yden-
berg and Dill 1986, Dill 1990). Thus, knowledge of
maximum escape velocities in natural settings should
permit a better understanding of space use.

Reports of maximum running speed (MRS) are often
based on anecdotal reports of animals running in the
field (see Garland 1983) or on experimental field stud-
ies (e.g.. Trombulak 1989), orare the results of carefully
controlled and measured studies of velocity in the lab-
oratory (c.g.. Huey et al. 1984, Djawdan and Garland
1988. Garland et al. 1988). Anecdotal reports often fail
to measure and study variables that may significantly
affect MRS (e.g.. the slope of terrain the animals are
running on, sex. body mass, the distance over which
the animal runs, etc.). Experimental field studies try to
control for some of these variables by forcing animals

" Manuscript received 11 January 1991; revised 13 No-
vember 1991: accepted 25 November 1991.

to run in unfamiliar but standardized settings (c.g..
Djawdan and Garland 1988). Laboratory studies often
control for extraneous variables (e.g., body mass, in-
cline, age, etc.) that may be important determinants of
velocity foranimals under natural conditions. Artificial
situations are thus created, which make extrapolation
to field conditions difficult. A study of maximum run-
ning speed that addresses its multidimensional nature
should shed light on space use and patch choice by
refuging animals.

Golden marmots (Marmota caudata aurea) are an
ideal species for such a study because they have well-
defined refugia (burrows), often escape predators by
running quickly to a burrow, and pattern their behav-
iors in space around burrows (D. T. Blumstein, per-
sonal observations). 1 chose to study the influence of
five variables (body mass, sex, distance run, incline,
substrate) in explaining the variation in MRS of adult
golden marmots. These variables were selected either
because other researchers have suggested they may in-
fluence MRS in terrestrial mammals (substrate: Nelson
and Mech 1985, Djawdan and Garland 1988; body
mass: Garland 1983, Trombulak 1989: incline: Taylor
et al. 1972, Reichman and Aitchinson 1981), or be-
cause I thought that they might influence MRS of mar-
mots (sex, distance).

In the following sections I develop and apply a gen-
cral statistical technique to measure the relative im-
portance of different variables in explaining variation
in maximum locomotor velocity of free-living animals.
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Additionally, I review assumptions of linear models
and methods to test their robustness. Methods to qual-
itatively and quantitatively evaluate a linear model are
described and later applied. Field repeatability of MRS
1s discussed. Throughout, I report the methods and
results of an experimental multivariate study of MRS
in golden marmots.

METHODS

Subjects and data collection

Application of this technique assumes properly col-
lected data. In general, the objective is to have a set of
independent time measurements of animals moving
quickly between two points. To avoid pseudoreplica-
tion (e.g., Machlis et al. 1985), there should be no more
than one observation in the final data set for each in-
dividual. The distance over which individuals are timed
should be randomly selected and should include a range
of distances. A uniform distribution of distances is
required for a good estimate of observer response time.
Other continuous independent variables should also
be uniformly distributed and categorical independent
variables should be approximately equally represented.

I studied the sprint speeds of adult golden marmots
at Dhee Sar (36°81' N, 74°95" E) in Pakistan’s Khun-
jerab National Park between 10 May and 7 September
1990. Golden marmots are large (3-5 kg) Old World
sciurids found in the Karakoram mountains of Central
Asia (Roberts 1977). Dhee Sar is a relatively flat high
alpine meadow (elevation 4100-4300 m) surrounded
by steep lateral glacial moraines and punctuated with
hilly terminal moraines. Marmots tend to live beside
or on the moraines. Over 100 individuals lived in the
17 marmot groups studied in 1990.

Marmots were trapped in Tomahawk livetraps set
in burrow entrances. Once trapped. a marmot was
transferred to a canvas handling bag in which it was
processed (sexed, weighed to the nearest 50 g, ear-
tagged. and measured, and its back was marked or
remarked with Nyanzol dye). Following processing, the
marmot was released and encouraged to run to a bur-
row by shouting and arm-waving. I assume these ma-
nipulated runs generated maximal sprint velocities, and
discarded observations if they appeared slow. In a study
of golden mantled ground squirrel (Spermophilus satu-
ratus) running speeds, Kenagy and Hoyt (1989) re-
ported no significant differences in velocities of natu-
rally observed runs and runs that were encouraged
following trapping.

One to three observers timed (to hundredths of a
second) a marmot during an interval while the marmot
was constantly running. Observers attempted to time
the marmot over a randomly selected distance between
2 and 30 m that included neither the first few steps,
nor the end of the marmot’s run. The stopwatch was
started after the marmot had run a metre or so and, I
assumed, had accelerated to a constant velocity. The
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actual distance travelled between two recognizable
landmarks was measured with a tape measure to the
nearest 0.1 m. The incline the marmot travelled across
was measured with a clinometer. It was not possible
to randomize the inclines run across. and the majority
of my observations were of marmots running along no
incline or downhill. I defined three different substrate
categories (dirt, stones, vegetation), and described a run
by the predominant category crossed. Since I wanted
to release marmots near the point of capture, no at-
tempt was made to randomize the substrates they were
run across.

Data for analysis

One consequence of having multiple observers is
that for a given run, an individual may have been timed
over a slightly different distance or incline, or run over
a different substrate. Rather than averaging (e.g.. Djaw-
dan and Garland 1988) the times and distances from
different observers (which might lose information and/
or make unnecessary assumptions about the relation-
ship between independent variables and MRS), I treat-
ed each observer’s datum as a unique observation. Thus,
an observation consisted of the time it took a marmot
to run between two points, the distance, incline, and
substrate between those points, and the sex, age, and
body mass of the marmot. This assumes a high degree
of interobserver reliability. In fact, interobserver reli-
ability was good: when marmots were timed across
nearly identical intervals, velocities calculated from
measured times of different observers were similar (n
= 12: Kendall’s 7 = 0.788, P < .01; Wilcoxon signed-
ranks = corrected for ties = —0.432, P > .05).

I discarded an observation if the marmot: was not
an adult (<3rd summer of activity based on known
and estimated age individuals); travelled over several
different inclines within a single run; stopped running
while it was being timed; seemed not to run. Obser-
vations were also discarded if an observer was not sure
of the exact starting and stopping points, or if the ob-
server was generally uncertain about the timing of the
event.

From this set of observations, I randomly chose one
datum per individual. This set of data was used in the
following analysis.

Statistical analysis

I developed a linear model that can be used to study
the effects of selected independent variables on max-
imum escape velocity. To do this, velocity was mod-
elled implicitly as a function of distance travelled and
time was used as the dependent variable. Linear mod-
elsassume a linear relationship between dependent and
independent variables. This assumption is really a
working hypothesis: if the final model does not explain
much variation in the dependent variable, a nonlinear
model (or a linear model with different variables) may
be justified.
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To model velocity implicitly as a function of dis-
tance. I multiplied the distance in an observation by
cach of the independent variables and used these new
values as independent variables to predict time. Since:

1 =d(1/1) (1)

(where ¢ = time, d = distance, and V' = velocity), new
variables created by multiplying raw scores by distance
can be used to predict time while simultaneously re-
flecting the relative importance of a variable in influ-
encing variation in MRS. In other words, if a new
independent variable failed to significantly explain
variation in time, then it would not explain variation
in velocity. I used time as the dependent variable to
associate measurement error with the variable most
likely to generate error.

[ assumed that most of my measurement error would
be associated with recording the running time of the
marmot. This is likely because distance, body mass,
sex. substrate, and incline are variables that can be
observed and measured relatively carefully, or easily
scored. In contrast, accurate measurements of time may
be more difficult. For instance if a stopwatch or man-
ually triggered event recorder is used, the response time
of the investigator adds onto the actual time of the
running animals. Two observer response times are in-
volved in each measure: the response time when an
animal crosses point .1, and the response time when it
crosses point B. Since it is not possible to make an a
priori prediction about whether these response times
will be additive or cancel each other out, total time
may have considerable error associated with it.

The foregoing linecar model permits study of the rel-
ative importance of different independent variables in
explaining variation in MRS while simultaneously pre-
dicting the time it would take an individual to travel
a certain distance, given certain parameters. Other
variables of interest were entered into the model as
well. The model is formally an analysis of covariance
(ANCOVA), incorporating both categorical (sex, sub-
strate) and continuous variables (distance, body mass,
incline). Categorical variables were dummy coded (Co-
hen and Cohen 1983), and all raw independent vari-
ables were transformed by multiplying the value or
category by the distance run in that observation. I chose
an ANCOVA rather than a dummy variable regression
because this method permitted an overall significance
test for the categorical factors, whereas a dummy vari-
able regression would essentially provide contrasts be-
tween cach level of a categorical factor and the refer-
ence level.

A linear model was first fitted to all variables of
interest. Given: u = observer response time (specifi-
cally. the intercept of the linear model); d = distance;
m = body mass; ¢ = sex: s = substrate; / = incline; and
¢ = unexplained variance, then:

[ =u+ dim) + dd) + d(g) + d(s) + di) + e (2)
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I used a backward stepping algorithm (SAS 1990) to
delete variables with the least significant Type 11 sum
of squares having a P > .1. A Type III sum of squares
was used as observations of categorical variables and
covariates were unbalanced, yet all covariates were
present (SAS 1990). Variables deleted from the model
are assumed to have an insignificant impact on MRS.

Descriptive univariate and bivariate statistics were
computed using FASTAT (SYSTAT 1989); nonpara-
metric descriptive statistics were computed using
StatView 512+ (Abacus Concepts 1986); linear models
were estimated using PROC GLM in SAS (SAS 1990).
Unless otherwise noted, significance implies a two-tailed
P < .05.

Statistical assumptions

Statistical assumptions associated with general linear
models include independently and normally distrib-
uted independent variables with a constant variance
(Fox 1984). Assumptions were tested by analyzing the
residuals with the SAS procedure UNIVARIATE. Ad-
ditionally, a strong correlation between independent
variables (multicollinearity) would prevent interpre-
tation of the results. Multicollinearity was checked by
generating a bivariate correlation matrix of all inde-
pendent variables and searching for correlations greater
than the absolute value of 0.7 (Slinker and Glantz 1985).

Model evaluation

Because this is a new method to study MRS, I wished
to evaluate its robustness. Ideally, models should be
evaluated with a set of independent observations (e.g.,
observations on different individuals; Bowerman and
O’Connell 1990). To do this, a set of independent ob-
servations must be divided. The first portion would be
used to develop a model (i.e., determine which vari-
ables significantly explained variability in time and
therefore velocity, and to estimate the coefficients of
significant variables). The remaining portion of the data
would be used to study the robustness of the model.

Models may be good at qualitative predictions (they
include the correct variables; see Cohen and Cohen
1983) and/or quantitative predictions (they accurately
predict the dependent variables; see Montgomery and
Peck 1982, Bowerman and O’Connell 1990). To study
the qualitative fit of a model, the model developed
with the first data set is run with the second data set.
If the same variables still significantly explained vari-
ability in the dependent variable, and no assumptions
are violated, the model qualitatively fits. Additionally,
the quantitative predictability of the model can be test-
ed. In this case, the coefficients from the model are
used to predict the times for the second data set. These
predicted times can be compared to observed times
and tested for goodness of fit.

I did not want to subdivide my initial set of inde-
pendent observations, and because golden marmots are
quite difficult to trap, I could not casily increase my



1760

sample size. However, many individuals were timed
on different days during the study. For those individ-
uals timed on >1 d, I created a second data set of
randomly selected observations for the same individ-
uals run on a 2nd d. This second data set was used to
cvaluate the model. Because this is a nonindependent
sample (i.c., it consists of repeated measures on the
same individuals), inference about the predictability
of the model should he limited.

1. Qualitative evaluation. — The second data set con-
sisted of observations of the same individuals in the
first set but timed on different days. The linear model
developed with the first data set was fitted to the second
data set. Residuals were plotted against each indepen-
dent variable in the model to search for a trend or
heteroscedasticity. The difference between the time
predicted using the coeflicients from the first model,
and the observed time in the second data set was also
plotted against independent variables to search for a
trend or heteroscedasticity. Ifeither of these were found
in either analysis, the model would not be adequate to
explain the second data set, and I would conclude that
the model was not qualitatively robust.

2. Quantitative evaluation. —1 checked quantitative
fit by studying the difference between predicted and
observed scores, and by studying the root mean square
error (root MsE) of the differences between the predicted
and observed scores.

I defined percent difference as:

100(¢,—1¢,)/1,, (3)

where 7, = observed time, 7, = predicted time. A low
average difference would suggest the model was robust.
Two difference estimates were calculated: the first used
the initial data set, the second used the second data
set. I used the initial data set’s difference value to pro-
vide a frame of reference to the values calculated from
the second data set.

Root MsEs of the differences for both data sets were
generated. MsEs reflect the goodness of fit of a model
(Bowerman and O’Connell 1990). Again, the root MSE
calculated from the first data set provided a reference
for the values in the second set.

3. Repeatability. — The multivariate nature of the
data suggested that a study of repeatability (e.g., Huey
and Dunham 1987, Van Berkum et al. 1989, Huey et
al. 1990. Shaffer et al. 1991, Austin and Shaffer 1992)
could provide unique information on field repeatabil-
ities. Repeatability of individual performance is usu-
ally measured under controlled situations and does not
incorporate natural sources of environmental varia-
tion. I studied repeatability two ways.

First, I compared the velocities of individuals mea-
sured on different days regardless of the substrate or
inclines, etc., that they ran across. To do this, I cal-
culated a Pearson correlation coefficient of the veloc-
ities in data sets 1 and 2. Austin and Shaffer (1992)
and Van Berkum et al. (1989) justify the use of a Pear-
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son correlation coefficient rather than an intraclass cor-
relation (see Falconer 1981) in ecological studies of
repeatability.

Second, T tested to see if there was consistency in
whether an animal that ran faster than predicted on
one day would also run faster than predicted on another
day. Conversely, I wanted to see if an animal that was
slower than predicted on a given day was also slower
than predicted on another day. This analysis would
account for those independent variables that signifi-
cantly influenced MRS. I calculated a correlation co-
efficient for the difference between observed and pre-
dicted times from data sets 1 and 2. Times were
predicted using the coeflicients generated from the lin-
ear model.

4. Simulations.—To further study the quantitative
importance of independent variables in influencing
MRS, simulations were run. The inverse of the sum
of the significant coeflicients in the model equals the
predicted velocity (see Eq. 1). I fixed all categorical
variables and all but one continuous variable. Then, I
solved for a range of values for the one continuous
variable. Plots of the relationship between an inde-
pendent variable and the predicted velocity permit a
visual assessment of the importance of a continuous
independent variable in influencing MRS, controlling
for variation in other independent variables.

RESULTS
The model

Sixty-three different marmots were run and timed:
over 50% of them were timed on >1 occasion. From
these observations, 11 observations were discarded. |
then randomly chose a single observation per marmot.
The first data set consisted of observations of 52 dif-
ferent adult marmots (Table 1, Appendix). The model
was first fitted with five independent variables: body
mass, sex, distance run, substrate, and incline. Body
mass did not have a significant Type 111 sum of squares
and was deleted. When a new model was fitted. all
independent variables had significant Type I1I sums of
squares (Table 2). Ninety-three percent of the variance
in observed time was explained with these two contin-
uous and two dummy coded categorical variables. From
this, I infer that sex, distance run, substrate, and incline
significantly influenced the MRS of these marmots.

Using the coefficient estimates of significant vari-
ables (Table 2), I generated an equation that predicts
running time. Where x* is the intercept coefficient of
the relationship ¢ = d(1/V) (i.e., the predicted time if
all other predictors are 0, an unrealistic and unmean-
ingful term since it is outside the range of distance
values used to develop the model), and where an as-
terisk indicates a coefficient estimate of the other vari-
ables defined in Eq. 2,

=u +dx*+ g* + dd*) + s*+ ™) 4
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Descriptive statistics for independent variables initially entered in the linear model of marmot running speeds as

well as for observed running speeds. Number of observations is listed for each variable. See Appendix for raw data.

Variable (Category) Mean SE Range N
Substrate (Stones) 31
(Dirt) 18
(Vegetation) 3

Distance (m) 11.9 1.02 1.7-36.0 52
Incline (°) . —6.5 1.47 —35-+15 52
Body mass (g) 3229.8 104.48 1850-4900 52
Males 3349.1 147.81 1900-4900 29
Females 3079.4 142.52 1850-4025 23
Speed (m/s) 4.41 0.15 2.45-7.95 52
Males 4.20 0.18 2.45-5.70 29
Females 4.68 0.24 3.04-7.95 23

predicts the time it takes an animal in category ¢ (e.g.,
male or female and running over dirt, stones, or veg-
etation) to run a given distance over a certain incline.
For instance, assume a male marmot runs 10.0 m up
a 10° dirt slope. By substituting the appropriate co-
efficients (from Table 2) into Eq. 4, and ignoring u,
time can be predicted:

t=10.0 m[0.3713 s/m + 0 s/m

— 10 m(0.0030 s/m?)
— 0.0548 s/m + 10°(0.0032 s/°m)],
t=3.19s. (5)

Dividing the distance by the predicted time will gen-
erate a predicted velocity: in this case, 3.13 m/s.

Statistical assumptions

Residuals analysis failed to indicate significant de-
partures from the assumptions of general linear models
(Fox 1984). The residuals did not significantly depart
from a normal distribution (Wilk-Shapiro test, P =
.5913). Plots of the residuals vs. each continuous in-
dependent variable illustrated no consistent trends and
fairly homogeneous variance. Plots of the residuals vs.
the categorical variables showed variability related to
the number of observations: the data were unbalanced.

Only one pair of independent variables (the substrate
classes **dirt’” and “*stones”) had a bivariate correlation
coeflicient >0.4. Thus, I conclude multicollinearity was
not a problem with these data.

Qualitative evaluation

The model appears robust. The second data set con-
sisted of 30 observations of some of the individuals in
the first data set. Eq. 4 was used to calculate the pre-
dicted times for each observation in both data sets.
Predicted times were subtracted from the observed
times, and these residuals were used to test the ro-
bustness of the model. These residuals appeared to
violate none of the assumptions of linear models.

Residuals were plotted against all independent vari-

ables in the model and body mass (excluded from the
model). A trend in these residual plots or heterosce-
dasticity would suggest either additional variables were
needed, or the data violated assumptions of linear
models. Neither trends nor heteroscedasticity were
noted in these residuals plots.

Quantitative evaluation

The average difference (residual) in the first data set
was —1.69 + 3.44 s (¥ + 1 sg) and the second data
set had an average difference of —1.95 + 5.19 s. The
model seems to predict the times in the second data
set about as well as it predicts the times in the data set
originally used to develop the model and calculate the
coefhicients.

The root MsE for the first data set was 0.532 s, while
for the second data set the root MSE was 0.709 s. (Root
MSE is expressed in the units of the original variables.)
Thus, the model predicts time (and therefore MRS) to
within =0.5 s on the first data set and a little less well
with the second data set. The model seems to be quan-
titatively robust.

Repeatability

Neither the difference in velocity nor the difference
between observed and predicted time was significantly
repeatable between days (Fig. 1). The correlation be-
tween the velocities in the first-and second data sets
was small (r = 0.155, n = 30), and not significant. The
relationship between observed and predicted times was
also small (r = —0.208, n = 30), and nonsignificant.
From this, I conclude that field measurements of MRS
were not repeatable in the marmots studied.

Simulations

The relative influence of incline was studied by pre-
dicting velocities of adult marmots running 10 m over
dirt and varying the incline between —30° and +30°
(Fig. 2). For instance, to calculate the velocity of a male
running 10 m up a 10° dirt slope, the appropriate co-
efficients from Table 2 are entered into the following
equation (recall Egs. 1 and 4):
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TaBLE 2. Linear model parameter estimates and their significance for the linear model of marmot running speeds fitted with

SAS 1o predict running time. Overall, the model explained 93% of the variation in running time and was highly significant

(P <.001).

Variable df Type III ss F Estimatest Categoryt SE
Intercept 1 0.4815 1.58Ns —0.3064Ns 0.2439
x§ 1 22.3582 73.30%** 0.3713*** 0.0370
Sex 1 2.7384 8.98%* —0.0385*** F 0.0128

. Ol M
Substrate 2 6.6801 10.95%** —0.0734** w 0.0342
—0.0548*** D 0.0126

o S
Distance 1 2.4096 7.90%* —0.0030** 0.0011
Incline 1 8.3542 27.39%x* 0.0032%** 0.0006

NS P > .05:* 001 < P < .0l;** P < 001.

T These coefficient estimates are used to predict the time it takes a certain sex marmot to run a specified distance and

incline over a particular substrate. The coefficients

presented here are unstandardized and are used to predict running time.
Standardized coeflicient estimates (created by setting the mean of the variables to 0 and the Sp to 1.0) are: Sex; =

—0.0528;

Substrate, = —0.0128; Substrate,, = —0.2859; Distance = —0.0768: Incline = 0.0936.
¥ ~Category™ refers to the different possible states of the categorical variables (F = female; M = male; D = dirt; S = stones:

W = vegetation).

§ The variable **x” is the intercept for the relationship 7 = d(1/V). Thus, 1/x would be the predicted velocity in the hypothetical

case where all other predictors are 0.

| A result of SAS’s parameterization whereby dummy variable categories are | less than the total number of categories.
SAS sets one category to 0 and solves for the remaining categories.

=/ g X A+ dd*) + s K+ )],

"= 1/[0.3713 s/m + 0 + 10 m(—0.0030 s/m?)
— 0.0548 s/m + 10°(0.0032 s/m°)],

"= 3.14 m/s. (6)

The range of velocities predicted falls within the range
of observed velocities. The slope of this line varies: an
adult marmot running downhill appears to gain veloc-
ity at a faster rate than one running uphill loses it. This
nonlinear relationship between an independent vari-
able and velocity is predictable since the linear model
was developed using the reciprocal of velocity. The
reciprocal of a linear relationship, by definition, is non-
linear. Since the linear model was significant, this non-
linear relationship should also be significant.

The influence of distance run was studied by pre-
dicting velocities of adult marmots running across level
dirt and varying the distance between 3 and 32 m (Fig.
1b). Marmots may accelerate when running longer dis-
tances. Again, the slope of the line seems to vary: the
marginal gain in velocity is greater with greater dis-
tances.

DiscussioN
Alternative statistical analyses

There are several other potential ways to study how
different independent variables influence maximum
velocity. A univariate analysis might lump all obser-
vations (regardless of the incline, distance, sex of mar-
mot, ctc.) to generate an average maximum velocity,
or compare the means of sums of individuals from the
same category (e.g., sex). Bivariate correlations be-
tween independent variables (e.g., body mass, sex, dis-

tance. substrate. incline) and the dependent variable,
velocity (distance/time), might be used to look for trends
between independent and dependent variables. How-
cver, neither univariate nor bivariate analyses permit
the study of the independent influence of one variable,
controlling for all other variables. Thus, a nonmulti-
variate analysis is not particularly useful to analyze
such a heterogeneous data set. A multivariate method
that would account for the unique influence of inde-
pendent variables is warranted.

An intuitively obvious, but methodologically flawed,
multivariate analysis would regress each independent
variable against the velocity. The problem with such
a method is that it prevents the study of distance’s
cffect on MRS. If velocity were the dependent variable
and distance were an independent variable, then a ratio-
correlation problem might arise (Atchley et al. 1976,
Schoener 1988). Ratio correlation arises when a de-
pendent variable is calculated from an independent
variable and there is error in one or both of the mea-
surements. Ratio correlation creates a spurious cor-
relation that may not reflect the true relationship be-
tween the variables. If velocity were the dependent
variable, and distance an independent variable, a spu-
rious correlation would be likely. The method devel-
oped in this paper addresses the above problems by
incorporating multiple variables in a way that avoids
the ratio-correlation problem.

Marmot MRS

Over the range of values measured. golden marmot
MRS is independent of body mass, but is influenced
by the: (1) sex of the marmot; (2) distance run: (3)
substrate type; and (4) incline over which it runs.
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FiG. 1. Plots of repeatability of golden marmot sprint
speeds displayed two ways. Part (a) illustrates the repeatability
of raw velocity scores from data sets | and 2. Part (b) illustrates
the relationship of the difference between observed and pre-
dicted (using the linear model) times for the two data sets.
Each data point is a different marmot, timed on two separate
days.

There are conflicting reports of the relative impor-
tance of body mass’ influence on MRS in terrestrial
mammals. Based on an interspecific literature survey,
Garland (1983) concluded that in rodents, MRS is in-
dependent of adult body mass. Djawdan and Garland
(1988) observed no significant relationship between
MRS and body mass in any of 25 species of rodents
they studied. Recently, Trombulak (1989) studied the
relationship between body mass and running speed in
Belding’s ground squirrels (Spermophilus beldingi) to
test the hypothesis that body fat influences locomotor
ability. He found a significant negative relationship
between body mass and running speed and inferred
that this cxplained seasonal fattening strategies. Be-
causc velocity is impaired by increased body mass,
hyperphagy immediately prior to hibernation, rather
than fattening early in the summer and maintaining
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body mass, becomes the best strategy to minimize the
time exposed to predators while in a state of impaired
locomotor ability.

Surprisingly, body mass did not significantly influ-
ence MRS in adult golden marmots, another hiber-
nating sciurid. This directly conflicts with Trombulak’s
(1989) observation in Belding’s ground squirrels, and
is consistent with conclusions based on anayses of dif-
ferent rodent species with different life histories (Gar-
land 1983, Djawdan and Garland 1988). Trombulak
(1989) studied squirrels during hyperphagia and could
be certain that differences in body mass were due only
to fat. I studied adult marmots throughout their active
season, and assume that much of the difference in body
mass in adult marmots is a function of seasonal fat-
tening patterns. Indeed, marmots generally lose mass
after emerging from hibernation and begin gaining mass
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FiG. 2. Illustration of the influence of independent vari-

ables on maximum running speed (MRS) in golden marmots.
Both graphs are the result of simulations where all but one
independent variable was set, and one continuous indepen-
dent variable was varied. Predicted observer response time,
u, was not included in the equations used to generate these
predicted times. Part (a) illustrates the relationship between
simulated incline and predicted MRS. Part (b) illustrates the
relationship between simulated distance run and predicted
MRS.
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following the disappearance of snow (D. T. Blumstein,
personal observation). A large but not obese animal has
morc muscle with which to locomote, while an obese
individual may have its locomotor ability compro-
mised by its increased mass. Furthermore, Trombulak
timed animals when they may have been accelerating
(during the Ist s of their run), while I timed animals
after I assumed their initial burst of acceleration was
completed. Body mass or obesity may influence ac-
celeration more than maximum sustainable speed.
Nevertheless, this study suggests further research in
other hibernating sciurids is required before Trom-
bulak’s suggestion that changes in body mass influence
the ability to escape, and thus influence fattening strat-
cgies, is generalized to other species.

It is interesting that sex, independent of body mass,
influences MRS in adult marmots. In all age classes,
male golden marmots are significantly heavier than
females (P. Ebenh6h and D. T. Blumstein, unpublished
data). Perhaps there are intersexual differences in mo-
tivation, physiology, or muscle mass that account for
different MRSs.

The positive relationship between distance run and
predicted velocity (Fig. 2b) was unexpected. Because
the distance an individual marmot was run was ran-
domized between 2 and 30 m, the model was generated
using a large range and fairly uniform distribution of
distance values. Usually, uniformly distributed inde-
pendent variables should provide a descriptive model
as there should be no outliers with excessive leverage
(Rousseeuw and Leroy [1987] discuss leverage in mul-
tiple-regression models). If this positive relationship
between distance and velocity is true, then it suggests
golden marmots can run for >30 m without apprecia-
bly fatiguing. This conclusion is suspect since some
marmots timed for a short distance were closer to holes
than those timed over a longer distance. Marmots close
to holes may have either not run as fast or slowed
before we stopped timing them. This is likely since
some of the short observations were aborted longer
runs (i.e.. we hoped to time a marmot running 15 m,
but it was only 10 m from a burrow so we timed it for
<10 m). However, Dill (1990) found no significant
relationship between the distance to a refuge and escape
velocity in an African cichlid fish. Nevertheless, I con-
clude that qualitatively distance is an important vari-
able that influences MRS for golden marmots, but the
actual quantitative relationship requires further study.

Anecdotal evidence supports the conclusion that
substrate influences locomotor ability. Marmots run-
ning on certain substrata (wet dirt or loose stones) ap-
pear to slip more and move more slowly than individ-
uals running on a more solid surface. Nelson and Mech
(1985) mention other instances of an individual’s lo-
comotor efficiency being influenced by substrate.

Anecdotal evidence supports the conclusion that in-
cline is important to golden marmots. It was difficult
to encourage marmots to run uphill. Often, they would
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pause and either run downhill in the opposite direction,
or run along, but not up the slope. Pattie (1967) re-
ported that startled yellow-bellied marmots (Marmota

Haviventris) fled by running downhill. Thus, for a mar-

mot-sized mammal, incline may be an important de-
terminant of MRS (cf. Taylor et al. 1972).

The asymmetrical shape of the predicted velocity
curve (Fig. 2a) implies marmots running downhill gain
velocity at a faster rate than marmots running uphill
lose it. Thus, the marginal risk of predation associated
with a unit change in distance from the refuge depends
on the incline. The effects of slope on velocity violate
assumptions of some foraging models, which assume
predation risk increases linearly with distance from a
refuge (e.g., Valone and Lima 1987, Devenport 1989).

The linear model generated predicted times that
compared favorably to the observed times for both
data sets. The predictive ability of the model might be
improved if the categorical data were balanced and the
continuous variables were collected so that all values
were equally represented. Unfortunately, the nature of
the question prevented me from collecting such data.
Recall, it was very difficult to get the marmots to run
uphill, so the data set was biased towards those ob-
servations of marmots running downhill and on flat
sections. Additionally, all substrate types were not
evenly distributed across the study area, thus substrate
types are unbalanced in the data set.

Repeatability

Repeatability calculated two ways was quite low. If
I have correctly estimated the true repeatabilities, 1
would need sample sizes of 90 (for r = —0.208) or 200
(for r = 0.155) to have enough power to permit me to
say that there was zero repeatability (Rohlf and Sokal
1981). Thus I am unable to distinguish between a low
value and a truly zero value with existing data.

Significant repeatabilities of locomotor performance
measured in controlled conditions have been found in
other species (e.g., Garland and Else 1987, Huey and
Dunham 1987, Van Berkum et al. 1989, Shaffer et al.
1991, Austin and Shaffer 1992). Exceptions include low
or nonsignificant repeatabilitics between several years
(Huey et al. 1990, Austin and Shaffer 1992) or meta-
morphic stages (Shaffer et al. 1991).

Repeatability could have been low or zero in mar-
mots if the experimental protocol was inconsistent.
Certainly, the environmental variables (e.g., substrate
type, incline) varied between measurements. Despite
this natural variation, it was possible to fit a highly
significant linear model that explained 93% of the vari-
ance in running time to the data. Thus, I do not feel
that the experimental protocol was inconsistent enough
to explain the observed low repeatability.

Assuming the low repeatabilities reflect a real bio-
logical situation, then the low values suggest that non-
genetic factors may greatly influence the MRS of mar-
mots. A fast individual in one set of circumstances
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might not be relatively fast in another set of circum-
stances. Repeatability places an upper limit on heri-
tability estimates (Falconer 1981, Boake 1989). Low
repeatabilities of MRS could come about in two ways:
environmental factors could be very important in de-
termining MRS, and/or there could be little additive
genetic variance for MRS. Low repeatabilities suggest
a sclective force (such as pursuit predators) may no
longer be able to gene}ate a response to selection on
MRS. Perhaps extant selective forces are working on
other behavioral correlates that minimize the necessity
of escaping (e.g.. the patterning of behavior in space
with respect to refugia).

Importance of observer response time

This method enables the study of the importance of
human response time when timing running animals.
Human response time (estimated by p) can potentially
bias measurements of MRS. If response time is large,
measured velocities may be less than predicted veloc-
itics because the time used to calculate measured ve-
locity will be excessively large. This is not only a prob-
lem when timing events with a stopwatch, but also
when a stopwatch is used to calibrate a more precise
measuring device (e.g., a Doppler radar gun; Blake et
al. 1990). There is a relationship between human re-
sponse time, the distance an animal is timed, and the
difference between predicted and observed scores. As
the distance over which a subject is timed increases,
the relative influence of human response time decreas-
es. Knowledge of u should enable studies of MRS that
arc minimally biased by human response time. The
statistical technique presented here can be used to es-
timate u.

The estimate of u, or the intercept of this linear
model. was not significantly different from zero (Table
2) and was within the range of response times reported
by other investigators doing similar tasks. Barnes (1980)
and Meister (1985) reported 0.1-0.3 s response times
for humans responding to visual stimuli that do not
require complex cognitive processing. Another inves-
tigator doing a similar task reported a response time
of =0.3 s (Belkin 1961). If significant, the negative
value of the intercept would imply we tended to an-
ticipate the marmots crossing visual lines when timing
them.

This model is very sensitive to the range of distances
over which subjects are run; the intercept estimate can
change appreciably if there are outliers. To obtain a
representative intercept, the distribution of distances
run by the subjects should be as uniformly distributed
as possible and should include short distances.

Conclusions

Similar studies of maximum escape velocity in other
species are needed to better understand the influence
of extrinsic environmental and intrinsic variables on
escape velocity. Further study is required to under-
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stand repeatability in nature. If other species show sim-
ilarly low or nonexistent field repeatabilities for MRS,
then we may have to revise our way of thinking about
current selection operating on locomotor performance.
Variables that influence escape velocity may influence
the perception of predation risk. Theory predicts, and
empirical studies support, the hypothesis that preda-
tion risk is often traded-off against the benefits of en-
gaging in an activity or choosing a patch (Lima and
Dill 1990). Thus, the perception of predation risk can
influence relative patch quality. A better understanding
of the perceptual world of animals should permit sig-
nificant variables to be incorporated into foraging and
habitat choice models, increasing their realism and
hopefully predictive ability.

I predict sex, distance run, substrate, and incline
influence space use and patch selection in golden mar-
mots. These specific hypotheses can be tested by quan-
tifying how marmots pattern their behavior with re-
spect to refugia. Testing these hypotheses will provide
new insight into the perceptual world of marmots.
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APPENDIX

Data set number 1 used to generate the linear model to study MRS in golden marmots.* Statistical summary is given in
Table 1.

SLPE DIST TIME VEL WT
ID SEX SUB ©) (m) ) (m/s) ®
12 F D -5 19.00 3.63 5.23 3075
6 F D ~15 12.50 2.25 5.56 3950
24 F D 0 1.70 0.41 4.15 3525
38 F D -5 3.30 0.93 3.55 3300
50 F D 3 6.10 118 5.17 2375
61 F D 2 8.80 1.69 5.21 2825
76 F D -12 16.20 2.73 5.93 3625
147 F D -35 7.00 0.88 7.95 3175
8 F S -10 12.00 2.31 5.19 2325
20 F S ~15 4.60 1.42 3.24 3475
22 F S -5 15.00 3.59 4.18 2675
27 F S -10 10.00 2.25 4.44 3575
43 F S 10 17.40 5.72 3.04 2675
59 F S -10 14.40 2.82 5.11 2525
12 F S 0 5.70 1.63 35 3825
114 F S 12 22.80 6.89 3.31 2525
17 F S 0 21.30 5.16 4.13 1875
124 F S ~11 10.00 3.24 3.09 1850
129 F S -13 6.00 1.05 5.71 2325
130 F S -15 13.00 2.64 4.92 4000
132 F S -8 11.10 2.46 4.51 3725
9 F v -8 4.30 0.73 5.89 3575
104 F v 0 11.00 2.43 4.53 4025
10 M D -35 4.80 0.86 5.58 3725
¥ M D -5 3.30 0.76 434 4900
2 M D 0 13.20 3.49 3.78 4000
29 M D -3 5.00 0.94 5.32 2575
30 M D 5 13.00 3.09 4.21 2800
52 M D -20 13.50 2.57 5.25 3850
95 M D -12 6.50 1.87 3.48 4075
100 M D 10 6.00 2.45 2.45 3400
108 M D ~10 9.20 1.76 5.23 4025
115 M D -4 32.00 6.23 5.14 2875
2 M S 0 4.30 0.83 5.18 1900
4 M S -5 11.40 2 5.7 2225
23 M S -5 28.00 7.27 3.85 2050
28 M S ~15 5.80 1.54 3.77 3725
39 M S -15 16.20 5.14 3.15 4025
40 M S 15 4.40 1.73 2.54 3650
41 M S -5 12.20 2.95 4.14 3925
44 M S -20 10.40 2.84 3.66 3625
69 M S ~10 3.90 1.08 3.61 3450
78 M S ~15 17.20 5.62 3.06 4125
79 M S ~15 19.00 5.61 3.39 2550
80 M S 10 9.10 1.91 4.76 3575
92 M S ~15 4.50 0.88 5.11 4025
97 M S 8 17.00 5.2 3.27 2375
105 M S ~18 17.40 3.68 4.73 4225
107 M S -10 9.00 1.72 5.23 2625
109 M S 13 21.00 8.01 2.62 2425
131 M S -10 36.00 7.62 4.72 2375
42 M v 0 12.00 2.58 4.65 4025

* Columns are: ID = marmot identification number; SEX = sex of marmot; SUB = substrate marmot ran across; SLPE =
incline of slope marmot ran across; DIST = distance marmot was timed; TIME = duration of run timed; VEL = velocity of
marmot run: WT = body mass of marmot immediately prior to run.



