
O
n a summer day a number of years ago I looked

down from an arête high up on the Creststone

Needle, a peak in southwestern Colorado, and

watched, with awe, two golden eagles (Aquila chrysae-
tos) cooperatively hunting in a meadow filled with yellow-

bellied marmots (Marmota flaviventris). One eagle circled

slowly above the meadow, which then erupted in a cacoph-

ony of loud chirps that radiated up the rock face. Marmots

scampered to their burrows and reared up to attention.

Meanwhile the second eagle flew low, and using the con-

tours of the glacial moraines as cover, tried to attack the

marmots, who were focused on its companion. That day

the marmots were lucky and, after several sorties, the eagles

flew off. Why were these chirps given? Did they repel the

eagles? How could such conspicuous signals evolve? What

might they mean? This chapter discusses the adaptive sig-

nificance of alarm signals in rodents. I focus mostly on air-

borne vocal signals, but also mention substrate-born seis-

mic alarm signals such as foot drumming.

When alarmed by predators, individuals of many species

emit loud vocalizations known as alarm calls (Klump and

Shalter 1984). Calls may be directed to conspecifics to warn

them about the presence of a predator (Sherman 1977;

Blumstein and Armitage 1997a), or to create pandemo-

nium (Neill and Cullen 1974; Sherman 1985), during which

time the caller may escape. Calls that function in these con-

texts should occur in social species. Calls may also be di-

rected to the predator and may function to discourage pur-

suit (Hasson 1991), or perhaps to attract other predators

—which would create competition, or predation on one

predator by another, thus allowing the prey to escape (Hög-

stedt 1983).

Snake-elicited foot-drumming by banner-tailed kanga-

roo rats (Dipodomys spectabilis) is a pursuit deterrent sig-

nal that informs the snake that it has been detected (Randall

and Matocq 1997). Similarly, California ground squirrels

(Spermophilus beecheyi; Owings and Coss 1977), black-

tailed prairie dogs (Cynomys ludovicianus; Loughry 1988;

Owings and Loughry 1985), and the Formosan squirrel

(Callosciurus erythraeus thaiwanensis; Tamura 1989) di-

rectly mob snakes, and their mobbing is associated with

both vocal and visual displays. In these cases, animals ob-

tain phenotypic (self-preserving) benefits from producing

alarms. Such behavior requires no complex explanation.

However, when signals are directed toward conspecifics, the

very act of signaling may also alert the predator to the call-

er’s presence. Thus, explaining why animals emit potentially

costly alarm calls to help others has been a topic of consid-

erable interest for some time (Maynard Smith 1965; Char-

nov and Krebs 1975; Sherman 1977; Blumstein et al. 1997).

The structure and function of alarm signals are inter-

related. For instance, we expect signals that are directed to

a predator to be obvious. Marler (1955) argued that mob-

bing calls of songbirds illustrate this in that they are broad-

band, rapidly repeated sounds that are easy to localize. In

contrast, alarm calls of songbirds that are elicited by aer-

ial predators are difficult to localize because they have a

relatively narrow bandwidth and fade in and out (Marler

1955). Thus, a complementary line of research seeks to un-

derstand the adaptive significance of alarm signal structure.
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Studies of rodents have been influential in developing a bet-

ter understanding of both aspects of alarm communication.

Which Rodents Produce Alarm Calls?

First, an apology. Because most rodents are nocturnal, soli-

tary, and semifossorial, they are generally difficult to study.

To properly categorize a vocalization as an alarm call one

must observe an individual interacting with a predator. For

most nocturnal species, this has not been done. Some spe-

cies are described as producing whines or squeals when held

(e.g., Watts 1975; Verts and Kirkland 1988), but this by it-

self is not evidence of an alarm call. Thus any review of

alarm calling in rodents is unavoidably biased towards di-

urnal, terrestrial, and social species.

Functionally, alarm calls would be most valuable to

diurnal, social, or colonial species. Alarm calls are long-

distance signals. If calling increases predation risk then such

signals should be produced only if calls carry relatively long

distances, callers can accurately assess their own vulner-

ability, and callers benefit from communicating alarm to

someone. Calling in the dark, when a caller might not be

able to evaluate risk or track predators accurately, or call-

ing underground when sounds attenuate quickly, could ex-

pose callers to excessive risk with little benefit and might

therefore be disfavored.

Of course, there are exceptions. For example, the plains

viscacha (Lagostomus maximus) is a highly social, noctur-

nal species that has been referred to as especially ‘loqua-

cious’ (Hudson 1872). It has a rich repertoire of vocaliza-

tions, including two types of alarm calls (Branch 1993).

Moreover, naked mole-rats (Heterocephalus glaber), which

are totally subterranean, have at least six different calls that

are associated with predator avoidance or colony defense

(Pepper et al. 1991). Although long-distance seismic com-

munication is common in fossorial mammals (Francescoli

2000), these signals are more commonly used to commu-

nicate territorial ownership and dominance or submission

rather than to signal alarm (Francescoli 2000; Randall

2001).

In fact, alarm calling seems to be most common in diur-

nal rodents: it has been reported in twenty rodent fami-

lies, and has probably evolved multiple independent times

(table 27.1). Ultrasonic alarm calls have been recently re-

ported in laboratory rats (Rattus norvegicus; Brudzynski

2001), but given the lack of comparative data, it is diffi-

cult to know how common these signals are in other spe-

cies. Moreover, because ultrasonic signals attenuate quickly

(Bradbury and Vehrencamp 1998), the active space of these

alarm calls must be relatively small. Alarm calling has been

best studied in the sciurid rodents (particularly in ground

squirrels, prairie dogs, and marmots). Tree squirrels in sev-

eral genera give alarm calls in addition to territorial calls.

Some social gerbils, and muroid rodents—voles, bamboo

rats, and whistling rats – also give alarm calls. Brush-tailed

porcupines reportedly shake their quills and stomp their

feet in alarm, cane rats and kangaroo rats, jerboas, and ger-

bils foot drum in alarm, and beavers slap their tail in alarm,

but none of these mammals has been reported to produce

alarm vocalizations. Alarm calling has also been reported in

many South American hystricognath rodents (Eisenberg

1974), but the details have been little studied. It would be

particularly rewarding to do so because these animals rep-

resent a radiation of complex sociality (Ebensperger 1998c;

Ebensperger and Cofré 2001) that is phylogenetically inde-

pendent from the better-studied sciurid rodents. Thus fur-

ther study can evaluate the generality of adaptive hypothe-

ses developed in convergent social systems.

What Are the Costs of Calling or Responding to Calls?

Understanding the adaptive significance of alarm calling

has often focused on investigating its costs. Like other be-

haviors, if calling has no costs, it is not difficult to envision

its evolution. Calling may have three types of fitness costs:

energy, opportunity, or predation.

No studies have been conducted on the energetic costs of

alarm calling in any species of rodent. Because individual

alarm calls often are brief (� 5 sec in duration), energetic

costs of producing a single utterance are probably trivial.

However, animals often engage in tonic bouts of alarm

calling whereby calls are repeated over time (Schleidt 1973;

Owings and Hennessy 1984). Tonic calls have been reported

in several ground squirrels (e.g., Balph and Balph 1966;

Leger et al. 1984; Loughry and McDonough 1988), prairie

dogs (e.g., Smith et al. 1977), marmots (e.g., Waring 1966;

Heard 1977; Barash 1989; Blumstein and Armitage 1997a;

Blumstein 1999a), and tree squirrels (Emmons 1978). In

some cases, tonic communication persists for long periods

after a predator has apparently left the area (Owings and

Hennessy 1984; Loughry and McDonough 1988). The en-

ergetic costs of these bouts of calling are likely to be slightly

greater than emitting a single call.

Opportunity costs—the costs of not engaging in other

important behaviors—are experienced by both the signaler

and the receiver. From the signaler’s perspective, alarm call-

ing seems to preclude foraging and engaging in activities

other than vigilance. While analyses of time budgets may be

used to contrast the opportunity costs of calling (i.e., the

cost of not engaging in an alternative behavior), the link be-

tween opportunity costs and fitness is unstudied. From the

receiver’s perspective, responding to calls modifies current
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Table 27.1 Genera in which acoustic alarm communication has been reported

Alarm Other alarm
Family Genus Common name Reference calls signals a

Sciuridae Aethosciurus Tree squirrels Emmons 19781
Ammospermophilus Ground squirrels Bolles 1988 yes
Callosciurus Tree squirrels Tamura and Yong 1993 yes
Citellus Ground squirrels Nikolskii 1979 yes
Cynomys Prairie dogs Blumstein and Armitage 1997b; yes yes

Hoogland 1995
Epixerus Tree squirrels Emmons 1978 yes
Eutamias Chipmunks Smith 1978 yes
Euxerus Ground squirrels Haltenorth and Diller 1980 yes
Funambulus Palm squirrel Roberts 1977 yes
Funisciurus Tree squirrels Emmons 1978 yes
Heliosciurus Tree squirrels Emmons 1978 yes
Marmota Marmots Blumstein and Armitage 1997b; yes yes

Roberts 1977
Microsciurus Tree squirrels Emmons 1997 yes
Myosciurus Tree squirrels Emmons 1978 yes
Paraxerus Bush squirrels de Graaff 1981 yes
Petinomys Flying squirrels Medway 1978 yes
Protoxerus Tree squirrels Emmons 1978 yes
Ratufa Giant squirrels Nowak 1991 yes
Rhinosciurus Tree squirrels Medway 1978 yes
Sciurus Tree squirrels Lishak 1984; Farentinos 1974 yes yes
Spermophilus Ground squirrels Blumstein and Armitage 1997b yes
Tamias Chipmunks Weary and Kramer 1995 yes
Tamiasciurus Tree squirrels Greene and Meagher 1998 yes
Xerus Ground squirrels Haltenorth and Diller 1980 yes

Castoridae Castor Beavers Hodgdon and Larson 1973 yes
Dipodidae Jaculus Jerboas Randall 1994 yes
Muridae Clethrionomys Red-backed voles Nowak 1991 yes

Dicrostonyx Lemming Brooks and Banks 1973 yes
Gerbillurus Hairy-footed gerbils Dempster et al. 1998 yes
Lemmus Lemming Krebs 1984 yes
Meriones Gerbils Roberts 1977 yes yes
Microtus Voles Youngman 1975; Wolff 1980b; yes

Nikolskii and Sukhanova 1992
Neotoma Woodrats Randall 1994 yes
Onychomys Grasshopper mice McCarty 1978 yes
Parotomys Whistling rats de Graaff 1981 yes
Peromyscus Deer mice Lackey et al. 1985; Johnson and yes yes

Armstrong 1987
Praomys Multi-mammate mice de Graaff 1981 yes
Rhizomys Bamboo rats Medway 1978 yes
Rhombomys Gerbils Randall et al. 2000; Randall and yes yes

Rogovin 2002
Spalax Lesser mole rats van der Brink 1968 yes

Myoxidae Dryomys Dormice Roberts 1977 yes
Geomyidae Dipodomys Kangaroo rats Randall 1994 yes

Microdipodops Kangaroo mice O’Farrell and Blaustein 1974 yes
Pedetidae Pedetes Spring hare Haltenorth and Diller 1980 yes
Ctenodactylidae Ctenodactylus Gundis Haltenorth and Diller 1980 yes

Felovia Nowak 1991 yes yes
Massouteria Nowak 1991 yes yes
Pectinator Pectinators Nowak 1991 yes

Hystricidae Atherurus � Hystrix Brush-tailed Haltenorth and Diller 1980; yes yes
porcupines Roberts 1977

Petromuridae Petromus Dassie rats Nowak 1991 yes
Thryonomyidae Thryonomys Cane rats Haltenorth and Diller 1980; yes yes

de Graaff 1981
(continued )



behavior (Baack and Switzer 2000). Typically, individuals

immediately increase vigilance but, over time, receivers ha-

bituate to tonic signals (i.e., individuals assess that the dan-

ger has passed and return to what they were doing pre-

viously: Loughry and McDonough 1988; Nikolskii 2000;

Hare and Atkins 2001; Blumstein and Daniel 2004). Again,

the fitness consequences of this opportunity cost have not

been investigated in any species of rodent. However, as long

as there is some opportunity cost, there is a selective pres-

sure on receivers to evaluate the reliability of callers.

If a caller calls when no predator is present, it is an un-

reliable informant. Caller reliability can be evaluated in two

ways: receivers could either assess characteristics of reliable

and unreliable classes of callers, or they could discriminate

among individuals. For instance, if calls from juveniles were

on average less reliable than calls from adults, and if ju-

veniles had acoustically distinctive calls (as has been dem-

onstrated in California ground squirrels; Hanson and Coss

2001b) and steppe marmots (Nesterova 1996), then re-

ceivers might “de-value” the calls from juveniles.

Individually distinctive acoustic signals do occur in

rodents. For example, banner-tailed kangaroo rats (Di-
podomys spectabilis) have individually distinctive foot-

drumming signatures that are used as territorial advertise-

ments (Randall 1989a). The postcopulatory chirps of male

Belding’s ground squirrels are individually distinctive (Leger

et al. 1984). However, individually distinctive alarm calls

are relatively unstudied. Juvenile Richardson’s ground squir-

rels (Spermophilus richardsonii) were the first rodent (Hare

1998b), and the second mammal (the first being vervet

monkeys: Cheney and Seyfarth 1980) in which discrimina-

tion among individual alarm callers has been inferred. Hare

and Atkins (2001) selectively manipulated the reliability of

Richardson’s ground squirrel callers by either pairing play-

backs of calls from an individual with the appearance of

a stuffed badger (thus creating “reliable” callers) or broad-

casting the calls without a badger present (thus creating “un-

reliable” callers). When the calls from reliable or unreliable

individuals were later played back, reliable calls elicited a

higher level of response.

Subsequently, using a habituation-recovery playback de-

sign (Evans 1997), yearling and adult yellow-bellied mar-

mots discriminated among individuals as well as some 

age-sex classes (Blumstein and Daniel 2004). In this study,

marmots were first habituated, with repeated playback,

to different exemplars of calls from an individual that was
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Table 27.1 (continued)

Alarm Other alarm
Family Genus Common name Reference calls signals a

Bathyergidae Heterocephalus Naked mole rats Pepper et al. 1991 yes
Agoutidae Agouti Pacas Eisenberg 1974 yes yes

Dasyprocta Agouti Emmons 1997 yes yes
Myoprocta Acouchy Emmons 1997 yes yes

Dinomyidae Dinomys Pacarana Eisenberg 1974 yes yes
Caviidae Cavia Guinea pigs, cavies Eisenberg 1974 yes

Dolichotis � Pediolagus Maras Eisenberg 1974 yes yes
Galea Cuis Eisenberg 1974 yes yes
Microcavia Cavies Eisenberg 1974 yes yes

Hydrochaeridae Hydrochaeris Capybara Emmons 1997 yes
Octodontidae Ctenomys Tucu-tucus Eisenberg 1974 yes

Octodon Degus Eisenberg 1974 yes yes
Octodontomys Long-tailed octodons Eisenberg 1974 yes
Spalacopus Cururos Eisenberg 1974 yes yes

Echimyidae Hoplomys Armored rat Emmons 1997 yes
Dactylomys Bamboo rats Emmons 1997 yes
Kannabateomys Southern bamboo rats Redford and Eisenberg 1992 yes
Proechimys Spiny rats Emmons 1997 yes yes

Capromyidae Capromys Hutias Eisenberg 1974 yes yes
Geocapromys Ground hutias Eisenberg 1974 yes
Plagiodontia Hispaniolan hutias Eisenberg 1974 yes

Chinchillidae Chinchilla Chinchillas Eisenberg 1974 yes
Lagidium Mountain viscachas Eisenberg 1974 yes yes
Lagostomus Vizcachas Eisenberg 1974 yes yes

NOTES: This summary is inevitably incomplete and has a number of intrinsic biases (see text). Nonetheless, it does illustrate that alarm communication has been reported in 
20 of the 53 families of rodents.
aOther signals include tooth-chattering, quill-shaking, tail-slapping, foot-thumping.



not a member of their social group. Subjects were then

“probed” with either a novel call from the same individual

or a novel call from a different individual nongroup mem-

ber. Marmots increased vigilance and suppressed foraging

in response to the call from the novel individual. Additional

playbacks of calls from different age-sex classes demon-

strated that these marmots were particularly responsive to

calls from young (Blumstein and Daniel 2004), which is in-

teresting because calls from young were initially hypothe-

sized to be less reliable than calls from adults. In contrast,

calls from young (which are demonstrably less reliable) were

less evocative in both California ground squirrels (Han-

son and Coss 1997, 2001b) and steppe marmots (Marmota
bobak; Nesterova 1996). For yellow-bellied marmots, some-

thing other than reliability must favor individual discrimi-

nation abilities; an alternative nepotistic explanation is dis-

cussed as follows.

If, by calling, individuals exposed themselves to a greater

risk of predation than noncallers, then calling behavior

would be a phenotypically altruistic behavior (Alexander

1974). How such behaviors are maintained by natural se-

lection is an interesting puzzle.

Is alarm calling in fact a risky behavior? Unfortunately,

evidence for predation costs of calling is difficult to obtain.

Most people who study alarm communication use these

vocalizations to help locate individual callers (e.g., Gurnell

1987; Barash 1989). An obvious inference is that predators

can do this as well. However, predation events are rare and

hard to observe, and unlike studies in birds (e.g., Klump

et al. 1986; Wood et al. 2000), there have been no experi-

mental studies focusing on predator’s responses to sciurid

alarm calls (Lima 2002).

However, there have been studies of predators’ responses

to foot thumps by banner-tailed kangaroo rats (Randall

and Matcoq 1997). Randall and Matcoq reported that

hungry snakes were attracted to territorial foot drumming

whereas recently fed snakes were repelled by foot drum-

ming. Since snakes did not differentiate between the anti-

predator and territorial foot drumming, foot drumming

may be costly.

Sherman (1977) found that when a terrestrial predator

appeared, Belding’s ground squirrels emitting calls were

tracked and killed more often than noncallers, whereas call-

ing in response to an aerial predator enhanced an individ-

ual’s likelihood of escape over that of noncallers (who prob-

ably were unaware of the raptor’s presence; Sherman 1985).

Other researchers also have observed diurnal sciurids being

attacked and killed by predators (e.g., Armitage 1982; Ba-

rash 1989; Murie 1992), but I am aware of no studies other

than Sherman’s, which simultaneously compared the fate of

callers with noncallers. For instance, in 18 years of field-

work, Barash observed thirteen cases of predation, but in

none of these cases was a calling animal observed to be

killed (Barash 1989).

Belding’s ground squirrels sit up in place and call when

they detect a terrestrial predator, whereas they scurry for

cover before or while calling when closely pursued by a

rapidly moving (aerial) predator (Sherman 1985). Likewise,

Columbian ground squirrels (Spermophilus columbianus)
modify their calling behavior as a function of predation risk

(MacWhirter 1992). When suddenly surprised by a simu-

lated aerial predator attack (a flying disk thrown directly

at them), individuals bolted into the nearest burrow. In con-

trast, upon sighting a distant flying disk, or a taxidermi-

cally mounted badger from a distance—individuals gave

repeated calls, often while running to their burrow. In some

other species individuals that call only do so after they have

sought cover. For instance, great gerbils (Rhombomys opi-
mus; Randall et al. 2000), black-tailed prairie dogs (Hoog-

land 1996b), and yellow-bellied marmots (Blumstein and

Armitage 1997a) generally call from burrow entrances,

while taiga voles (Microtus xanthognathus) may stop call-

ing if a predator comes too close and, following release

from capture, call only after they have reached safety (Wolff

1980b).

One reason that evidence may be equivocal about the

cost of calling is that callers may also be communicating

with the predator, and there may be variation between spe-

cies in the value of such communication. Thus while the

alarm calls of some ground squirrels (Sherman 1985) and

marmots become more cryptic as risk increases (Blumstein

1995a; Blumstein and Arnold 1995), some other rodents

call more, and at greater rates, as risk increases (e.g., Har-

ris et al. 1983; Nikolskii and Nesterova 1989, 1990; Nik-

ol’skii and Pereladova 1994; Nikol’skii et al. 1994; Nik-

ol’skii 2000; Blumstein and Armitage 1997a; Randall and

Rogovin 2002). For instance, yellow-bellied marmots pro-

duce more calls and calls at a faster rate as a human ap-

proaches them (Blumstein and Armitage 1997a). Making

one’s self more obvious as risk increases is consistent with

the hypothesis that calls are directed to the predator. Thus,

calls may simultaneously have a pursuit-deterrent function

while they also communicate relative risk to conspecifics.

Identifying the relative importance of both of these factors

is a worthy goal for future research.

What Are the Benefits of Calling?

There are several possible solutions to the problem of phe-

notypically altruistic acts. I believe that we gain insight into

the workings of evolution by decomposing inclusive fitness

benefits into direct and indirect components (Brown 1987).

Others (e.g., Hauber and Sherman 1998) question the use
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of “direct” and “indirect” to describe fitness gains through

descendents or nondescendents because, once appropri-

ately weighted by relatedness, the Hamiltonian logic (Ham-

ilton 1964) of inclusive fitness is agnostic about its source.

Nonetheless, by calling, individuals may warn descendent

or nondescendent kin, or both. Paths to obtaining direct

fitness include reciprocity and directly increasing the prob-

ability of their own survival by calling, or the survival of

their descendent kin (Sherman 1977, 1985).

Individuals could conceivably engage in reciprocal call-

ing (Trivers 1971), whereby individual A might call one

time and individual B might call another time. Without de-

fectors, such a strategy might explain costly alarm calling.

All such reciprocal arrangements rely on individual recog-

nition and memory (Wilkinson 2002). Some ground squir-

rels and marmots have such abilities (Hare 1998b; Blumstein

and Daniel 2004; Blumstein et al. 2004). Using olfactory

cues, Belding’s ground squirrels can remember individuals

for at least 9 months (Mateo and Johnston 2000). How-

ever, there is no evidence from any rodent that callers “take

turns,” or that when surrounded by unreliable callers, other

individuals cease calling. Moreover, alarm calls are unlikely

to be reciprocal because they are broadcast widely. This

means that eavesdropping “cheaters” can hear and benefit

from calls but not take their turn at calling. Moreover, there

is no way for a caller to select its audience so as to not warn

cheaters if calls are loud and have a large active space. Rec-

iprocity only works when there is a direct transfer of bene-

fits from individual A to B and vice versa; if eavesdropping

individuals C, D, and E also benefit, reciprocity is destabi-

lized. (I thank Paul Sherman for clearly articulating this im-

portant point.)

If callers are in fact communicating to predators, then

calling should reduce individuals’ predation risk. Differen-

tiating the degree to which callers are communicating to the

predator or to conspecifics is difficult. Imagine a coyote or

a mountain lion walking through a colony of prairie dogs

or plains viscachas. As the predator passes through, mul-

tiple individuals may call (e.g., Branch 1993; Hoogland

1995). Calls evoke escape and heightened vigilance in con-

specifics, and the predator walks on and leaves the colony.

Is each caller calling to encourage the predator to move on?

Is this a form of collective defense? Or, because individuals

may be in different social groups, could each caller be call-

ing to warn their family members? In this case we would see

multiple callers, because many individuals have kin nearby.

Callers may obtain indirect fitness benefits by increasing

the survival of collateral kin. There is some controversy

over the relative importance of warning descendent versus

collateral kin for explaining the adaptive significance of

alarm calling. Sherman (1977) and Dunford (1977a) inde-

pendently reported that by calling, individual Belding’s and

round-tailed ground squirrels (Spermophilus tereticaudus)
respectively, were alerting descendent and nondescendent

kin. Callers therefore received nepotistic fitness benefits

from calling. Calling to increase indirect fitness has subse-

quently been reported to occur in chipmunks (Smith 1978;

Burke da Silva et al. 2002), prairie dogs (Hoogland 1995,

1996a), as well as in several other ground squirrels (e.g.,

Schwagmeyer 1980; Davis 1984a; MacWhirter 1992). Sher-

man’s (1977) study quantified the frequency of calling when

animals were surrounded by different audiences (sensu Gy-

ger 1990), but many other studies did not, and evidence for

kin-selected benefits from calling often is based on a caller

being surrounded by relatives.

There have been several suggestions (Shields 1980; Blum-

stein et al. 1997; Blumstein and Armitage 1998a) that such

evidence of kin-selection sensu lato fails to clarify the rela-

tive importance of indirect fitness in explaining the evolu-

tion of alarm-calling behavior. On one hand, fitness is fit-

ness however it is obtained, and indirect fitness should not

be considered a special type of fitness (Dawkins 1979; Sher-

man 1980b; Hauber and Sherman 1998). On the other

hand, viewing calling as a behavior that functions solely to

protect descendents (which may have evolved as a form of

parental care) is different from hypothesizing that alarm

calling behavior functions solely to protect nondescendents.

Admittedly, most researchers do not make this strong di-

chotomy; rather, they point out that calling is nepotistic

and then determine which relatives are beneficiaries. Sher-

man (1977), studying Belding’s ground squirrels, and my

colleagues and myself, studying yellow-bellied marmots,

found that adult females with emergent (and vulnerable)

young-of-the-year are the age/sex class most likely to call.

In the ground squirrels, females with older offspring (or

more collateral relatives around) called at higher frequen-

cies than females with fewer nearby relatives. However, in

the marmots, numbers of adult kin did not affect calling fre-

quencies. These differences suggest that nepotism in the

form of alarm calling extends to descendent and collateral

kin in Belding’s ground squirrels, but only to descendents in

marmots. Sherman (1980a, 1981a) discussed how demog-

raphy (dispersal and mortality) affect the limits of nepotism.

Demographic differences between marmots and Belding’s

ground squirrels may affect the different limits of nepotism,

as evidenced by alarm calling in these two species.

A recent experiment suggests that both male and female

marmots pay attention to vulnerable young (Blumstein and

Daniel 2004). Following experimental playbacks of alarm

calls from different age/sex classes, yellow-bellied mar-

mots suppressed foraging the most after hearing calls from

young. We inferred from this that marmots are particularly

attuned to the status of vulnerable young. Note, this finding

is inconsistent with the hypothesis that young callers were
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less reliable, and that calls from young should therefore

communicate less risk than calls from adults. This finding is

consistent with Sherman’s (1980a, 1981a) limits of nepo-

tism framework because adult yellow-bellied marmots are

likely to be surrounded primarily by their offspring and

by offspring from female relatives. Compared to Belding’s

ground squirrels, yellow-bellied marmots may limit their

nepotistic behavior toward offspring because they evolved

in a patchier habitat and live in a matrilineal group struc-

ture. In contrast, ground squirrels live in relatively higher-

density meadows and many more relatives are likely to be

within earshot of an alarm call. These demographic differ-

ences may help explain interspecific variation in the evolu-

tion and adaptive utility of alarm communication.

How Does the Acoustic Environment 
Affect Communication?

All signals must be transmitted from the signaler to the re-

ceiver, during which time they may degrade (i.e., lose fi-

delity) and attenuate (i.e., lose amplitude—Bradbury and

Vehrencamp 1998). It follows that the environment should

favor certain types of vocalizations. Several predictions can

be drawn from first principles about the structure of long-

distance signals like rodent alarm calls.

First, forest-dwelling species should have lower fre-

quency vocalizations than species in open habitats to maxi-

mize transmission distance, because low-frequency sounds

travel around objects and attenuate less than high-frequency

sounds. The fundamental and dominant frequencies of

alarm calls of southern African tree squirrels (Paraxerus
spp. and Funisciurus congicus) are as predicted: forest spe-

cies have lower frequency calls than do savannah species

(Viljoen 1983). Emmons (1978) studied nine species of West

African rainforest squirrels and contrasted their vocaliza-

tions to temperate Sciurus and Tamiasciurus species living

in more open habitats. She found that certain long-distance

calls from rainforest species were lower in frequency than

similar calls from temperate tree squirrels. Smith (1978)

studied two species of Tamiasciurus tree squirrels and found

that they also produced relatively low-frequency alarm calls.

Perla and Slobodchikoff (2002) found that frequency com-

ponents of Gunnison prairie dog (Cynomys gunnisoni)
alarm calls varied seasonally in ways that were consistent

with the hypothesis that calls were modified to be trans-

mitted through different microhabitats, which themselves

changed seasonally. And Le Roux et al. (2002) found that

a forest-dwelling whistling rat (Parotomys sp.) had a lower-

frequency alarm call than a sibling species living in more

open habitat.

Second, low frequency calls are predicted in subterra-

nean species, because of the rapid attenuation of high fre-

quency sounds in earthen burrows. Studies of subterranean

mammals generally (Francescoli 2000), and naked mole-

rats particularly (Pepper et al. 1991; Judd and Sherman

1996), have shown that their alarm calls are indeed very

low in frequency.

Third, dense forest habitat should select against rapid

frequency modulation because rapidly paced calls would

reverberate off trees and thus degrade. In the open we might

expect selection to act against long pure tonal calls because

they will be degraded by heat waves reflecting off the open

ground. The antipredator vocalizations of antelope squir-

rels (Ammospermophilus spp.) vary with habitat, but not

as predicted from first principles (Bolles 1988). Specifically,

species in open desert habitats where we might expect se-

lection against tonal calls have long-duration pure-toned

trills. In contrast, those species in more closed, rocky/prai-

rie habitats have shorter-duration harsh trills. Because habi-

tat complexity and vertical relief might increase reverbera-

tion, selection should favor short and potentially redundant

calls in such habitats. However, the opposite has been re-

ported in two rodents. In Gunnison’s prairie dogs (Cyno-
mys gunnisoni), the number of syllables and the total call

length are positively associated with habitat complexity

(Slobodchikoff and Coast 1980). Populations in areas with

more vegetative cover, rocks, and tree stumps emit longer

calls and calls with more syllables than populations in more

open country. Slobodchikoff and Coast (1980) suggested

that these calls are longer and more complex in more struc-

turally complex habitat, where callers might not be able to

see other individuals, to ensure that kin are alerted to the

presence of a predator. Nikol’skii (Nikol’skii 1974, 1984;

Nikol’skii 1994; Nikol’skii et al. 2002) has found that mar-

mot species (and populations) in habitats with greater relief

have more rapidly paced alarm calls than species (and pop-

ulations) in flatter terrain. If rapidly paced calls commu-

nicate greater risk (e.g., Blumstein and Armitage 1997a),

then it is possible that habitat-specific perceptions of risk

influence call structure. The relationship between habitat-

specific predation risk and call complexity remains to be

tested directly.

Studies on birds provide some support for the hypothesis

that evolution has designed long-distance signals to maxi-

mize transmission through a species’ habitat (e.g., Wiley

1991; Bradbury and Vehrencamp 1998). However, Daniel

and Blumstein (1998) found no support for this acoustic

adaptation hypothesis in marmots. While there was varia-

tion in how well marmot alarm calls were transmitted

through habitats, and there was evidence that some habitats

generally degraded calls more than other habitats, there

was no statistical interaction between habitat and species.

Thus, a species’ own call was not transmitted best in its na-
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tive habitat—an essential prediction of the acoustic adap-

tation hypothesis.

I found no support for the hypothesis that overall reper-

toire size is constrained by the acoustic transmission fidelity

of the habitat. Blumstein (2003) broadcast and rerecorded

pure tones through the habitats of eight marmot species,

thus generating a metric of habitat transmission fidelity

(Blumstein and Daniel 1997). No relationship occurred be-

tween habitat transmission fidelity and alarm call repertoire

size. However, after removing variation in alarm call reper-

toire size explained by the acoustic environment, there was

a relationship between social complexity and repertoire size

(see also Blumstein and Armitage 1997b).

Taken together, we might generally expect the habitat to

select for gross frequency characteristics of calls, whereas it

might not have a direct effect on temporal characteristics or

on microstructural differences. A recent comparative study

(Blumstein and Turner 2005) drew similar conclusions for

birdsong.

What Might Explain Variation in Call Microstructure?

Unlike birdsong (Catchpole and Slater 1995) or many of

the calls of insects or anurans (Gerhardt and Huber 2002),

alarm calls are not directly involved in species identifica-

tion, territorial defense, or mate choice. And the diversity

of alarm calls in rodents requires special explanation, espe-

cially because of the contrast to alarm calls in songbirds,

which often are convergent (Marler 1955). What, other

than gross habitat differences, might favor the calls of ro-

dents to diverge?

Character displacement (Schulter 2002) has been sug-

gested to be important among sympatric species. In three

species of Townsend chipmunks (Eutamius spp.), alarm

chirps were most distinctive and less variable in popula-

tions at species boundaries (Gannon and Lawlor 1989). Be-

cause character displacement results from resource com-

petition, there should be a demonstrable cost to having less

distinctive alarm calls in sympatry. While sympatric species

may respond to each other’s alarm calls (Blumstein and Ar-

mitage 1997a; Shriner 1998), it is likely that variation in re-

liability of heterospecific callers may select for divergence in

sympatry. Specifically, if a small species has more predators

than a larger species, the smaller species will be more likely

to give alarm calls in situations that are not threatening to

the larger species than vice versa. Thus, from the perspec-

tive of the larger species, calls from the smaller species are

not reliable, but not vice versa. Selection within a species

living in sympatry with alarm-calling heterospecifics might

thus favor divergent calls. No data are currently available to

evaluate this.

Genetic drift has been suggested to lead to call variation

over time (Daniel and Blumstein 1998). Evidence of heri-

table genetic variation in call structure comes from studies

of hybrids that have been reported to have calls of interme-

diate structure (Nikol’skiy et al. 1984; Nikol’skii and Stari-

kov 1997), or structures that resemble one parent more

than another (Koeppl et al. 1978). Sibling species have calls

more similar to each other than more distant relatives (Hoff-

mann et al. 1979; Bibikow 1996; Nikol’skii 1996; Blum-

stein 1999a). Divergence of alarm calls may occur relatively

rapidly once populations are isolated on islands or by gla-

ciers (Nikol’skii et al. 1999). For instance, Nikolsky (1981)

reported divergence in arctic ground squirrel alarm calls af-

ter 7,500 years of isolation on islands. Given the potential

importance of drift, it is surprising that the alarm calls of

geographically isolated populations of yellow-bellied mar-

mots have not diverged (Blumstein and Armitage 1997a).

Finally, in at least one species (the yellow-bellied mar-

mot), variation in temporal characteristics of calls seems to

be important in communicating risk, while variation in the

frequency structure of calls seems to be important for in-

dividual discrimination (Blumstein and Armitage 1997a).

Selection for individual recognition systems can act on sig-

nalers, receivers, or both (Beecher and Stoddard 1990). For

instance, if it is in the best interest of the signaler to indicate

its identity, selection should favor signalers to produce dis-

tinctive calls. Such selection is likely to be common in ter-

ritorial and nepotistic signaling systems. By contrast, there

may be no particular benefit from producing individually

specific variation, but there is a benefit to receivers for dis-

criminating among callers. In this case, calls may not be dis-

tinctive, but receivers may nevertheless be able to discrimi-

nate among them.

Repertoire Size and the Evolution 
of Functional Reference

Human language is unquestionably unique relative to the

diversity of nonhuman vocalizations (Hockett 1960; Pinker

1994). A comparative perspective allows us to gain novel

insights into language evolution (Blumstein 1999b). A com-

plementary line of research on alarm vocalizations in ro-

dents has focused on the evolution of meaningful com-

munication. While much has been written about avian

repertoire size (Kroodsma 1982; Irwin 1990; Catchpole

and Slater 1995), birdsong is hypothesized to only have

one or two functions (mate choice and territory defense—

Catchpole and Slater; 1995). Each song (or syllable) that a

bird sings is not typically hypothesized to have a particular

function per se. In contrast, alarm call variants of birds and

mammals may in fact refer to external objects or events.

Such functionally referential communication has been re-

ported in fowl (Evans et al. 1993), in some nonhuman pri-
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mates (e.g., Cheney and Seyfarth 1990; Zuberbühler 2000),

and in a social mongoose (Manser 2001; Manser et al.

2001). Predator-specific, functionally referential calls have

been reported in one study of Gunnison’s prairie dogs

(Cynomys gunnisoni; Slobodchikoff et al. 1991), but not

in another (Fitzgerald and Lechleitner 1974), and in one

study of alpine marmots (M. marmota; Lenti Boero 1992),

but not another (Blumstein and Arnold 1995). Greene and

Meagher (1998) reported that red squirrel (Tamiasciurus
hudsonicus) alarm calls had a high degree of production

specificity and were likely to be functionally referential.

Functionally referential alarm calls may indicate specific

types of predators (e.g., aerial or terrestrial), specific pred-

atory species (e.g., snake, raptor, canid), or commands for

recipients to follow (run away, stand alert, climb a tree). To

study functional reference, two pieces of complementary

evidence are required (Evans 1997).

First, there should be a strong association between a spe-

cific external object or event (e.g., the appearance of a coy-

ote) and a particular call. This call should be different from

calls elicited when, say, an eagle appears. Satisfying this

condition means that calls have a high degree of “produc-

tion specificity.”

Second, calls should elicit unique behavioral responses.

Communication can only be understood by studying the

behavior of the signaler and the receiver; playback experi-

ments help us understand meaning. Simply documenting

variable alarm calls does not necessarily imply that individ-

uals will respond differently to them (Blumstein 1995b). To

demonstrate functional reference there must be predator-

specific responses. Thus playback of a “coyote alarm call”

or an “eagle alarm call” should evoke responses typically

observed when the relevant predator is seen. If so, we can

infer a high degree of response specificity.

Some support has been provided for the production

specificity criterion, but less so for the response specific-

ity criterion in rodent alarm communication. Greene and

Meagher (1998) provide experimental evidence that red

squirrels produced predator-class specific alarm calls. Slo-

bodchikoff et al. (1991) and Ackers and Slobodchikoff

(1999) simulated different predators by walking toward

Gunnison’s prairie dogs wearing different colored shirts.

They reported that the animals modified the structure of

their calls to potentially communicate information about

the individual predator, as well as aspects of the size and

shape of silhouette models of actual predators. Three spe-

cies of Malaysian tree squirrels (Callosciurus spp.) reported

to have a high degree of production specificity are also re-

ported to vary their responses as a function of alarm call

type (Tamura and Yong 1993). In none of these three cases

were playback experiments conducted, so the degree to

which calls alone can elicit unique responses is unknown.

Most ground squirrels produce two different types of

alarm calls (Blumstein and Armitage 1997b). The first, a

short whistle, is often elicited by aerial predators, while the

second, a longer trill, is often elicited by terrestrial preda-

tors. Ground squirrels also have predator-specific response

differences: the sudden appearance of a raptor causes them

to run to the nearest burrow, whereas they do not neces-

sarily return to the nearest burrow after discovering a wea-

sel (e.g., Turner 1973; Sherman 1985). However, closer ex-

amination typically reveals that “aerial” calls are actually

elicited in high-risk situations (e.g., Robinson 1981; Ow-

ings and Hennessy 1984; Leger et al. 1984; Sherman 1985)

and the production specificity is not high. Thus rather than

communicating predator type, calls are likely to communi-

cate degree of risk, which may reflect the time an individ-

ual has to escape the predator (e.g., Leger et al. 1979, 1984;

Blumstein and Armitage 1997a; Robinson 1981; Sherman

1985) or may encode information about distance to the

predator (Burke da Silva et al. 1994; Blumstein 1995a).

Even when there is some degree of production specificity,

playback experiments typically lead to graded responses,

which are more indicative of risk, rather than information

about a specific type of predator (e.g., Blumstein and Armi-

tage 1997a; Blumstein 1999b).

Does Lack of Functional Reference 
Limit Complex Communication?

A reasonable question emerges from the observation that

variable repertoires are not necessarily functionally referen-

tial: does a limited “vocabulary” prevent meaningful com-

munication? At one level this question reveals an anthro-

pocentric bias. Because humans have language, we classify

language-like communication as especially complex. How-

ever, if we have learned anything by studying biological di-

versity, it is that there are multiple ways to solve a problem.

Rodents illustrate some of the ways in which animals

can dynamically communicate the degree of risk. First, an-

imals communicate risk by varying the number of calls

emitted, or the rate at which they call, as seen in great ger-

bils (Randall and Rogovin 2002), yellow-bellied (Blumstein

and Armitage 1997a), steppe (Nikol’skii 2000), and alpine

marmots (Hofer and Ingold 1984; Blumstein and Arnold

1995), tassel-eared squirrels (Sciurus aberti; Farentinos

1974), chipmunks (Weary and Kramer 1995), and Califor-

nia (Leger et al. 1979) and Richardson’s ground squirrels

(Warkentin et al. 2001). Second, individuals can vary how

they “package” calls into multi-note units, as seen in golden

marmots (Blumstein 1995a). Third, individuals can vary the

duration of a nonreferential whistle, as seen with Brant’s

whistling rats (Parotomys brantsii). Whistling rats produce

longer whistles in lower-risk situations (a distant human or

snake) and shorter whistles in higher-risk situations, which
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are followed by disappearing into their burrows. Fourth,

individuals can use different calls, as seen in yellow-bellied

marmots (Blumstein and Armitage 1997a) and in the plains

viscacha (Branch 1993). Or, combinations of calls may be

used to dynamically communicate risk, as seen in Vancou-

ver Island marmots (Marmota vancouverensis; Blumstein

1999a) and in great gerbils (Randall and Rogovin 2002).

Fifth, call amplitude can communicate degree of risk, as

seen in chipmunks (Weary and Kramer 1995), California

(Leger et al. 1979) and Columbian ground squirrels (Har-

ris et al. 1983), and yellow-bellied marmots (Blumstein and

Armitage 1997a). Sixth, the existence of multiple callers

rather than a single caller can communicate risk, as seen

with chipmunks (Weary and Kramer 1995). Seventh, the

duration of calling bouts may communicate degree of risk.

For instance, snake-elicited antipredator behavior persists

for longer periods of time when California ground squirrels

are responding to a dangerous snake (large and warm) than

to a less dangerous snake (small and cold; Swiasgood et al.

1999a, 1999b). Finally, some rodents have multichannel

systems, such as the great gerbil (Randall et al. 2000) and the

California ground squirrel (Owings and Hennessy 1984),

which may have elements that both communicate risk to

conspecifics and discourage attack by predators. Thus, while

referential communication is a special case of alarm com-

munication, it need not be viewed as the epitome of com-

plex alarm communication. And, while complex commu-

nicative abilities may emerge from being able to produce

different calls, they need not necessarily emerge from being

able to produce different calls (Blumstein 1999b).

A Model for the Evolution of Alarm 
Communication in Rodents

Any model for the evolution of alarm communication must

address three questions: (1) what factors influence whether

a species produces alarm calls? (2) what is the function of

alarm calling? and (3) what explains variation in call struc-

ture? I summarize the conclusions of this review schemati-

cally (fig. 27.1) and discuss them as follows.

Habitat, sociality, and behavior influence the evolution

of alarm calling. Social, terrestrial, and diurnal species are

those most likely to produce alarm calls, although there are

some notable exceptions. Rodents produce alarm calls to

increase personal, direct, and indirect fitness. We expect the

degree of aggregation (sociality: e.g., Randall 1994; Randall

2001) and demography (Sherman 1980a, 1981a) to con-

strain the types of fitness benefits. For instance, solitary ro-

dents, such as kangaroo rats (Randall and Matocq 1997),

or a female ground squirrel with a snake in its reproduc-

tive burrow (Swaisgood, Owings, and Rowe 1999), pro-

duce alarm signals directed toward the predator to dis-

courage it from hunting or to drive it away. By driving off a

predator, individuals will save themselves as well as vulner-

able offspring.

If solitary adult females are surrounded by mature off-

spring, or if animals live in more complex social groups

formed by delayed dispersal and characterized by overlap-

ping generations (Blumstein and Armitage 1998b, 1999),

there exists the opportunity for animals to obtain indirect

fitness benefits from calling. Enhancing this indirect fitness

may be more important to some species than others, and

not all species will have evolved alarm calling behavior the

same way (e.g., Holmes 2001).

The evolution of call structure and repertoire size is in-

fluenced by a combination of environmental, social, and

functional considerations. Available evidence suggests that

a call’s dominant frequency is influenced by the openness of

the habitat; species living in closed, forested habitats have

lower dominant frequencies than those in more open habi-

tats. There remains, however, a need for studies to prop-

erly control for phylogeny and body size (e.g., Wiley 1991;

Blumstein and Turner 2005) when testing for these effects.

However, the acoustic environment seemingly has no other

consistent influence on call structure. Interspecific variation

may result from drift, although character displacement also

is a possibility. In some cases, variation could result from

advantages of communicating individual identity.

Functional considerations also influence the structure of

alarm calls. More socially complex sciurid rodents emit

more types of alarm calls (Blumstein and Armitage 1997b;

Blumstein 2003) and there are indications of this in other

taxa (e.g., naked mole-rats—Pepper et al. 1991). And while

functionally referential communication is uncommon in ro-

dents, modulating the number, rate, amplitude, and dura-

tion of alarm calls, using different calls or modalities, and

manipulating call order are all ways rodents communicate

degree of risk. Interestingly, in the species that are reported

to have a high degree of production specificity (Gunnison’s

prairie dogs, red squirrels, and three species of Malaysian

tree squirrels), complex and species-specific antipredator

behavior is employed. Thus, the Macedonia and Evans’

(1993) model for the evolution of functionally referential

communication, which suggested that the need to commu-

nicate about different mutually exclusive escape strategies

may have general, explanatory value for rodent alarm calls.

Diurnal, social rodents will continue to be an outstand-

ing model system to study questions of the adaptive utility

of alarm-calling behavior. New studies that test hypotheses

generated from studies of sciurid rodents will increase our

general understanding of factors responsible for the evolu-

tion and maintenance of alarm calling.
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Summary

Alarm calls are signals elicited by predators that may be di-

rected to predators, most likely to discourage attack, or to

conspecifics to warn them about the presence of a predator.

Social, terrestrial, and diurnal species are those most likely

to produce alarm calls, although there are some notable ex-

ceptions. The evolution of call structure and repertoire size

is influenced by a combination of environmental, social, and

functional considerations. More socially complex sciurid

rodents emit more types of alarm calls. If solitary adult fe-

males are surrounded by mature offspring, or if animals live

in more complex social groups formed by delayed dispersal

and characterized by overlapping generations, there exists

the opportunity for animals to obtain indirect fitness bene-

fits from calling. Overall, rodents may receive both per-

sonal, direct, and indirect benefits from calling. Enhancing

indirect fitness may be more important to some species than

others, and not all species will have evolved alarm-calling

behavior the same way. Diurnal social rodents will continue

to be an outstanding model system to study questions of the

adaptive utility of alarm calling behavior.
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Figure 27.1 Summary of factors influencing the evolution of alarm calling in rodents. Alarm calling is most commonly reported in social
or colonial species that are terrestrial or semifossorial, and are at least partly active by day. Various components of the structure of alarm
calls are influenced by different factors. The dominant frequency of calls is higher in open habitats than closed habitats, and habitat com-
plexity may influence calling rate via its effect on risk perception. Several factors influence microstructural frequency variation in calls.
Social complexity influences repertoire size. Variation in risk influences the amplitude at which a call is emitted, call type, call duration,
the modality or modalities used to communicate risk, the number of calls emitted, the rate at which calls are emitted, and the order in
which calls are emitted. The probability of emitting an alarm call is a function of the benefits obtained, which are influenced by the de-
gree of sociality. Highly social species, or species in which potential callers are surrounded by kin, may obtain indirect fitness by calling.
Other species may obtain personal and direct fitness by calling.
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