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Abstract

We developed a virtual world to study the effect of predators on predator recognition. We trained a neural network to

discriminate between the shapes of simulated aerial and terrestrial predators and non-predators. Then, the network’s weighting

values were fixed into the genomes of a set of autonomous agents. These animats were required to eat, avoid death due to starvation,

and avoid predation, by fleeing from approaching predators. We systematically varied the predator’s lethality, the mutation rate, the

cost of fleeing a predator, and the presence or absence of aerial and terrestrial predators. We used ANOVA to analyse the average

recognition ability (a measure of directional selection) and the standard deviation of recognition ability (a measure of relaxed

selection) after 500 generations of selection. Mutation rate and the cost of flight had the greatest effect on both the average and

standard deviation of recognition abilities. The loss of all predators relaxed selection on predator recognition abilities. The loss of

specific predators had complex effects on recognition abilities. Persistence is largely influenced by escape costs.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Species may lose their predators naturally (through
range expansions or extinction), or un-naturally (when
animals are brought into captivity). In response to a loss
of predators, costly antipredator behavior is often lost
(e.g. Diamond, 1990; Berger, 1998; Magurran, 1999;
Berger et al., 2001). Indeed, species on isolated islands,
such as the Galápagos, are often described as being
predator-naı̈ve (Darwin, 1839; Lack, 1947; Curio, 1966).
The consequences of this loss may be profound if
predator-naı̈ve species re-encounter their predators
(McLean et al., 1999; Griffin et al., 2000). Loss of
antipredator behavior, however, is not inevitable and
there are cases where antipredator behavior persists
e front matter r 2005 Elsevier Ltd. All rights reserved.

i.2005.08.011

ing author. Tel.: +1310 267 4746;

3987.

ess: marmots@ucla.edu (D.T. Blumstein).
after the loss of predators (e.g. Byers, 1997; Coss, 1999;
Blumstein et al., 2000; Blumstein and Daniel, 2002).

There are several inter-related hypotheses to explain
the persistence of antipredator behavior under relaxed
selection (i.e. the loss of one or more types of predators).
The ‘‘ghost of predators past’’ hypothesis (Byers, 1997;
Peckarsky and Penton, 1988) simply says that a species
subject to past selection for antipredator behavior will
retain it if it is not too costly (e.g. Neill, 1990). The
‘‘pleiotropic’’ (Byers, 1997; Coss, 1999) and ‘‘functional
integration’’ (Coss, 1999) hypotheses emphasize that
behaviors used when dealing with predators may have
multiple functions or otherwise be genetically linked.
Thus, antipredator behavior may be retained simply
because there is selection on a locus maintained for
other reasons. Most species have more than a single
predator and rare predators may have a significant effect
on antipredator behavior (Lima, 1992). There has been a
recent call for more attention to be paid to the combined
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effects of multiple predators on prey (Lima, 1992; Sih et
al., 1998; Magurran, 1999; Krams, 2000). The ‘‘multi-
predator hypothesis’’ builds on previous hypotheses
about persistence and predicts that the presence of a
single predator may be sufficient to explain evolutionary
persistence of antipredator behavior—even for formerly
present predators (Blumstein et al., 2004). Pleiotropy
and/or functional integration may provide the necessary
selection to maintain complex traits and we generally
expect complex traits to not assort independently
because a minor change could have major negative
consequences (Fisher, 1958). When antipredator beha-
vior has pleiotropic effects, and/or when it does not
assort independently, species living with multiple pre-
dators may have evolved specific traits to reduce
predation risk in response to each predator, but their
expression is not predicted to vary independently.
Imagine a young ungulate that must be cryptic and
immobile to avoid predation. An individual without
both traits would be selectively disadvantaged. Simi-
larly, being able to respond to one but not another type
of extant predator would put individuals at a selective
disadvantage. Thus, the presence of a single predator
should maintain antipredator adaptations for predators
no longer present.

The presence of predators, per se, may not be the only
factor influencing persistence. Generally, we should
expect costly behaviors to be lost, while low-cost
behaviors may persist. Very costly traits, such as those
that reduce reproductive success (e.g. those subject to
sexual selection), seem to respond quickly to relaxed
selection brought about by the removal of predators
(Endler, 1980; Endler and Houde, 1995). Predator
lethality affects antipredator behavior (Brown, 1999;
Brown and Kotler, in press) and it should influence
persistence.

We developed a virtual world (based loosely on the
tammar wallabies (Macropus eugenii) studied by Blum-
stein et al., 2000; Blumstein and Daniel, 2002, 2004) to
study the conditions under which predator recognition
abilities would persist following the loss of some or all of
a species’ predators. We first developed a neural
network that was trained to discriminate predators
(raptors or mammalian predators) from non-predators
(smaller birds or macropodids). The use of neural
networks to study questions in animal behavior is
growing (e.g. Bateson and Horn, 1994; Enquist and
Arak, 1994; Hurd et al., 1995; Phelps et al., 2001; Ryan
et al., 2001). Neural networks are characterized by a
series of ‘‘neurons’’ that are connected to each other in
varying degrees. The strength of a connection can be
defined as a ‘‘weight’’. The process of ‘‘training the
network’’ creates weights that optimize the discrimina-
tion. Once the network was able to discriminate between
predators and non-predators, we fixed the weights in
this network and created a ‘‘genome’’ of weights that
was subject to mutation. This genome was placed into
animats—autonomous agents—that had to avoid death
from starvation and predation. Thus, the second phase
of the simulation employed a genetic algorithm (Sumida
et al., 1990) to study the conditions under which
predator discrimination abilities persist. Agent-based
modeling is becoming increasingly common in animal
behavior research (e.g. Pepper and Smuts, 2002;
Ruckstuhl and Kokko, 2002; Coss et al., 2005), and
others have used genetic algorithms to help develop a
neural network (e.g. Ezoe and Iwasa, 1997; Kamo et al.,
1998; Yao, 1999; Phelps and Ryan, 2001). However, the
combination of neural networks and genetic algorithms
acting within an agent-based model is relatively recent
(Lee, 2003). To study the main prediction of the multi-
predator hypotheses (namely, that we should expect the
presence of one predator to explain the persistence of
antipredator behavior but the complete elimination of
predators to abolish antipredator behavior) we manipu-
lated the presence or absence of specific predators.
Because other things influence the persistence of
antipredator behavior, we also manipulated mutation
rate, the cost of flight, and predator lethality. We
quantified predator recognition abilities directly by
presenting our animats with a virtual predator and
recording the network’s classification: a probability
distribution over the four classes encountered (i.e. the
shapes of simulated aerial and terrestrial predators and
non-predators). We searched for evidence of directional
and relaxed selection in response to the loss of one or all
predators. Directional selection would be inferred if the
average predator recognition abilities shifted, while
relaxed selection would be inferred if the variation in
predator recognition abilities increased (e.g. Endler,
1986; McPhee, 2003).
2. Methods

We created a simulation environment where animals
foraged in a forest clearing and could retreat to safety in
cover that surrounded it. Specifically, our virtual world
consisted of simulated wallabies (with a diameter of 3
pixels each) foraging in a square meadow surrounded by
protective cover (500� 500 pixels total area) that
contained other wallabies as well as a combination of
predators and non-predators (also 3 pixels each). The
detection distance of both predators and prey was
identical; upon detection, predators approached walla-
bies and, if classified as a predator, wallabies fled.
Wallabies could escape a predator by out-maneuvering
it, reaching protective cover, or by having the predator
terminate attack because another wallaby entered its
detection range. When in cover, the wallabies were safe
from predation and predators were unable to detect
them. However, to avoid starvation, wallabies had to
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Fig. 1. Prototypical exemplars of predatory and non-predatory agents.

Aerial predators resembled a raptor, non-predators, a small bird.

Terrestrial predators simulated a canid, non-predators, an herbivore.

These prototypes were modified for the training phase. In the

evolutionary phase, discrimination of the prototypes was tested at

every generation.
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forage in the open. Food randomly replenished itself in
the open, and wallabies had to encounter food to eat. In
cover there were only other wallabies moving around,
but in the open, there were both non-predatory and
predatory agents.

Our predators were generalists that took two forms:
birds and mammals; birds moved twice as fast as
mammals. By varying the speed, we varied predator
lethality: fast moving predators encountered and killed
wallabies at higher frequencies than slow moving
predators. There were predatory and non-predatory
birds and mammals. Predatory mammals were larger
and roughly resembled a canid, while predatory birds
resembled a raptor (Fig. 1). Predators were always
larger than non-predators. Overall, non-predatory birds
were more similar to predatory birds (36% of the non-
predator’s body was identical to the predator’s body)
than were non-predatory mammals and predatory
mammals (27% similarity). We fixed the maximum
number of wallabies. Wallabies had to forage while
avoiding predators (in our virtual world we assumed
that predator recognition and response were integrated),
but behavior was not state dependent; wallabies with
low energy reserves were not more likely to leave cover
to forage. While we acknowledge the importance of
state-dependent behavior, we made this simplifying
assumption to reduce the number of variables requiring
analysis. Rather, they moved around randomly encoun-
tering food or starving if they did not. While not
specifically quantified, we did observe wallabies starving
while fleeing agents.

At the end of a generation, wallabies reproduced to
replace those that died. Reproduction was asexual and
those with greater energy reserves contributed propor-
tionally more to replacing missing wallabies. Below we
describe, in detail, the neural network and genetic
algorithm used to study discrimination, along with the
precise experiments conducted in this virtual world.

2.1. Using a neural network to discriminate among

predators

For each wallaby, we created a two-layer neural
network with probabilistic outputs. Such a network can
be thought of as a machine that decides the probability,
based on some input, that an exemplar falls into one of
four classes: aerial predator, aerial non-predator,
terrestrial predator, terrestrial non-predator. There are
a variety of computational machines that could be used
for classification (Duda et al., 2001). We chose a neural
network with probabilistic outputs for three reasons.

First, animal brains are composed of webs of simple
processing units with plastic, synaptic efficacies between
them. Thus, there is an analogy between brains and
artificial neural networks (Churchland and Sejnowski,
1992).
Second, there is evidence that brains utilize some form
of probabilistic assessment in making classifications and
judgments based on peripheral sensory inputs. This
evidence comes from both the cognitive sciences
(Anderson, 1990; Gigerenzer and Murray, 1987; Gilo-
vich et al., 2002; Kahneman et al., 1982; Oaksfordl and
Chater, 2003) as well as other related fields such as
artificial intelligence (Pearl, 1988).

Finally, the weights of a neural network (see below)
are easily encoded as a genome, thereby enabling
us to study the evolutionary persistence of classi-
fication following the removal of some or all types of
predators.

Our network began with 100 input units representing
the 10� 10 matrix we used to draw agents (Fig. 1).
Note: the visual display of the animats during simula-
tion (i.e. 3 pixel diameter circles) is unrelated to the
patterns representing their visual appearance used as
input to the neural networks (see above). Each input
unit was connected in a forward fashion (Hertz et al.,
1991) to each of seven hidden units. We chose seven
units empirically, based on the time it took to train the
classifier with various numbers of hidden units. Each of
the seven hidden units was associated with a 10� 10
weight matrix w indicating the synaptic strength
between it and the 100 inputs. The weight matrix
provided a set of parameters by which a suitable
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algorithm could allow the network to ‘‘learn’’ the
correct classification of each predator’s or non-preda-
tor’s pattern.

Given input pattern m, and input vector x, hidden unit
j produced output

V
m
j ¼ gðh

m
j Þ ¼ g

X
k

wjkx
m
k

 !
, (1)

where the function g is the hyperbolic tangent function
tan h. The nonlinearity provided by g is required in
order to guarantee a differentiable surface for the
learning algorithm.

The outputs of all seven hidden units represented a
hidden output vector. Each hidden unit was connected,
in a forward fashion, to each of the four output units
(each representing one of the four types of agents). Each
of these output units was associated with a 7� 7 weight
matrix indicating the synaptic strength between it and
the 7 hidden units. For input pattern m, output unit i

produces for the final output
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In this case the function g is the softmax function given
by

expðOiÞP
j

expðOjÞ
, (3)

where j ranges over all network outputs. The softmax
function requires all network outputs to sum to unity so
that they can be interpreted as probabilities of class
membership (Hertz et al., 1991; Duda et al., 2001).

Each network was trained to correctly classify 100 test
cases of each agent type. These test cases were created by
randomly adding noise to the 10� 10 prototypical
exemplars of each agent type. For training we employed
an augmented version of the BFGS algorithm (Broyden,
1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970),
which employs a minimum posterior, cross-entropy
error function to find weight matrices that maximized
the accuracy of the classifications. If the actual and
target outputs of the network represent two probability
distributions, then information theory suggests that
their cross-entropy is a natural measure of their
difference (Hertz et al., 1991). Thus, an entropy-based
error function can be viewed as a natural system that
learns the correct probabilities of a set of hypotheses
represented by the output units (Hertz et al., 1991; Duda
et al., 2001). It is this error surface that the BFGS
algorithm minimizes, and the final trained network
outputs compute the posterior probability of class o
given the input vector x

pðojxÞ. (4)
We used the ANN:DTU Matlab Toolbox (MacKay,
1992a, b; Larsen and Hansen, 2002; http://mole.imm.
dtu.dk/toolbox/ann/) to develop our neural network.
We trained the network to an error threshold of 0.01.
Thus, we considered a network that made 1% deviation
from absolute certainty in classification as sufficiently
discriminative. Network discrimination depends upon
the number and type of the training patterns. The
original batch of 800 training/validation patterns con-
sisted of the original prototypes to which we added a
random amount of noise (up to 10%). The training and
validation patterns where then randomly chosen from
this pool of 800. The noise prevented over-fitting and
facilitated the generalization capabilities of the networks
(Hertz et al., 1991; Duda et al., 2001). We fixed the
number of training and validation patters to 200 each;
100 of these were predator variants, and 100 of these
were non-predator variants. Each of these batches was
then further divided so that half were terrestrial and half
aerial.

2.2. Using a genetic algorithm to study relaxed selection

Once trained, the classification ability of each net-
work was defined by its two weighting matrices.
We directly encoded these matrices to produce a ge-
nome for each network phenotype (Mitchell, 1996). To
do so, we encoded each matrix row-by-row as a
vector and then concatenated the vector representing
W onto the vector representing o. We used this
simulated genome to study the evolutionary persi-
stence of predator recognition under different selective
regimes.

Each ‘‘generation’’ had a fixed duration during which
time the wallabies would have to avoid predators, and
starvation. The genotype could mutate, at a variable
rate, and the cost of locomotion could be varied. At the
end of a generation, surviving wallabies reproduced
asexually; fitness was proportional to its energy reserves
and was specified as

offspringi ¼ n � fiti

� �
, (5)

where n was the total number of desired wallabies in
each generation. The genomes of newly created walla-
bies were subjected to random point mutation reflecting
the desired rate of mutation.

2.3. Identifying the parameter space to study persistence

With too much mutation, all discrimination was
eliminated. We were unable to generate a sufficiently
large selective pressure (by varying the relative cost of
flight) to ‘‘recover’’ discrimination. Moreover, if the
risky predator moved too quickly, all wallabies were
killed before the end of a generation and the simulation
ended. All wallabies were also killed if the generation

http://mole.imm.dtu.dk/toolbox/ann/
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was too long. If the cost of fleeing was too great, all
wallabies starved. Thus, we systematically varied muta-
tion rate, generation length, the cost of flight, and the
speed of the predators until some wallabies always
survived a 500-generation simulation cycle. This state
space allowed us to examine the effect size of the
different variables; parameters were not estimated from
empirical data.

2.4. Simulating relaxed selection

Our basic runs had 30 wallabies and a total of 14
predatory and non-predatory agents to simulate a
situation where there was strong selection for appro-
priate recognition. We varied the presence or absence of
aerial and terrestrial predators, whether the predators
moved at a different speed or not (in the fast case, aerial
predators moved twice as fast as terrestrial predators
and thus had increased ‘‘lethality’’), mutation rate (0.001
or 0.0001 mutations/generation—these represent very
high mutation rates—Baker et al., 1996, 1997), and the
cost of fleeing a predator (1.5 or 15 energy units). The
basic cost of ‘‘living’’ was 0.1 energy unit per time
period. To simulate different selection regimes we
created four types of simulation runs: the first run
had an aerial and terrestrial predator, the second had
neither an aerial nor a terrestrial predator, and the
remaining two had one aerial or one terrestrial predator,
respectively. When we eliminated a predator, we
substituted it with a non-predator of the same hunting
style. At the start of each generation, we ‘‘probed’’ the
genome with the original prototypical exemplars and
recorded the classification accuracy. Our simulation
lasted 500 generations; each generation lasted 50 time
steps. Each combination of parameters was replicated 10
times creating a set of 160 simulations. For each run, we
calculated the average and standard deviation of the
ability to differentiate aerial and terrestrial predators
across the 500 generations.

We fitted the following ANOVA models to the mean
and standard deviation of the classification scores. First,
we used ANOVA to study the effects of the presence or
absence of all predators on aerial and terrestrial
predator recognition. We also included the fixed factors
of mutation rate and the cost of flight. For this and
other models, we interpret p-valueso0.05 as significant
and we focus on the partial-eta square as a measure of a
variable’s (or interaction’s) effect size (Cohen, 1988). We
elected to focus on the effect size of each parameter
because this focuses on the relative importance of each
variable (or interaction) and should be less sensitive to
the absolute parameter values used. We then fitted a
model that had mutation rate and cost of flight as fixed
factors along with the presence or absence of aerial
predators and the presence or absence of terrestrial
predators.
3. Results

Tables 1 and 2 present our main results. They
illustrate the effect sizes (presented as partial-eta
squares) from the factorial ANOVA studying the effect
of mutation rate, cost of escape (simulated by varying
the energetic cost of escape relative to the basal
metabolic rate), the presence of any predator (i.e. either
or both aerial or terrestrial predators were present), and
the relative difference in lethality (simulated by predator
speed) on the persistence of predator recognition
abilities. Within a table, larger effect sizes indicate a
relatively more important variable (or interaction) in
explaining the persistence of the ability to recognize
terrestrial or aerial predators.

Mutation rate, cost of escape, predator lethality—
directly, and acting through interactions—explained
most of the variation in the average and the standard
deviation of predator recognition abilities (Tables 1, 2).
Predator recognition decreased and the variation in
recognition increased with increasing mutation rate, cost
of escape, and differential predator lethality. The partial
eta-squares of the mutation rate had the single largest
effect on recognition abilities. Consistently more varia-
tion was explained in the standard deviation of predator
recognition abilities than the average recognition
abilities. This is consistent with the hypothesis that
selection on recognition abilities has been relaxed, rather
than directionally changed.

The loss of all predators led to relaxed selection on
predator recognition abilities two ways: directly,
through the loss of predators, and indirectly through
the interaction between mutation rate and the absence
of predators (Table 1). There was no significant effect of
the loss of all predators on average predator recognition
abilities.

The loss of specific predators did not act directly on
predator recognition abilities nor were the effects
symmetrical. For instance, predator lethality had a
directional and relaxed effect on aerial predator
recognition abilities, but not terrestrial predator recog-
nition abilities (Table 2). Additionally, variation in the
average and standard deviation in terrestrial predator
recognition was explained by interactions of mutation
rate and lethality with the presence of terrestrial
predators. The reciprocal was not true: the presence of
aerial predators did not influence aerial predator
recognition, nor did it influence terrestrial predator
recognition.
4. Discussion

The multi-predator hypothesis predicts that the
presence of other predators is an important determinant
of whether or not antipredator ability persists following
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Table 1

Effect sizes (partial-eta squares) for significant main effects and interactions calculated from a factorial ANOVA studying the presence of any

predator on the standard deviation and average predator recognition abilities for terrestrial and aerial predators

Terrestrial Aerial

Standard deviation of recognition abilities

Mutation rate 0.202 0.274

Cost of escape 0.019 0.043

Presence of any predator 0.014 0.016

Differential predator lethality 0.031

Mutation rate*Cost of escape 0.019 0.041

Mutation rate*Presence of any predator 0.013 0.012

Cost of escape*Presence of any predator

Mutation rate*Cost of escape*Presence of any predator

Mutation rate*Differential predator lethality 0.026

Cost of escape*Differential predator lethality 0.043

Mutation rate*Cost of escape*Differential predator lethality 0.04

Presence of any predator*Differential predator lethality

Mutation rate*Presence of any predator*Differential predator lethality

Cost of escape*Presence of any predator*Differential predator lethality

Mutation rate*Cost of escape*Presence of any predator*Differential predator lethality

Average recognition abilities

Mutation rate 0.172 0.221

Cost of escape 0.016 0.037

Presence of any predator

Differential predator lethality 0.035

Mutation rate*Cost of escape 0.016 0.032

Mutation rate*Presence of any predator

Cost of escape*Presence of any predator

Mutation rate*Cost of escape*Presence of any predator

Mutation rate*Differential predator lethality 0.03

Cost of escape*Differential predator lethality 0.038

Mutation rate*Cost of escape*Differential predator lethality 0.034

Presence of any predator*Differential predator lethality

Mutation rate*Presence of any predator*Differential predator lethality

Cost of escape*Presence of any predator*Differential predator lethality

Mutation rate*Cost of escape*Presence of any predator*Differential predator lethality

Standard deviation of recognition abilities is a metric of relaxed selection and average recognition abilities is a measure of directional selection. More

variation in recognition abilities was explained by relaxed selection (R2
terrestrial ¼ 0:316; R2

aerial ¼ 0:408), than by directional selection

(R2
terrestrial ¼ 0:281; R2

aerial ¼ 0:351) suggesting that changes in these parameters act primarily by relaxing selection for recognition abilities.
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the loss of a single predator. It makes no prediction
about the relative effect size of having another predator
around. We included other conceivably important
variables in our simulation environment so as to
evaluate the relative effect sizes of the presence of
another predator on the persistence of predator
recognition abilities.

Mutation rate had the greatest effect on predator
recognition abilities. This was not entirely unexpected
because high mutation rates would quickly eliminate
functional traits. Moreover, because mutations are
random we should expect the effect of mutations to
increase the variation in response, and thus relax
selection. If selection were held constant, mutation rates
alone would increase variation. If mutation rates varied
between populations (Baker et al., 1997; Møller and
Mousseau, 2003), or if populations had different
amounts of genetic variation to begin with (e.g. as
might be found in a captive situation), lack of genetic
variation could limit the rate of loss.

The cost of escaping predators was the second most
important factor in explaining variation in recognition
abilities. This is in agreement with the common finding
that costly traits respond rapidly to a loss of predators.
Interestingly, variation in recognition was primarily
accounted for by the cost, rather than by interactions
with the presence of predators. In our virtual world,
wallabies lost energy if they incorrectly classified a
common non-predator as a predator and avoided them.
The risk of starvation alone, or the fitness cost of
reduced fecundity could be sufficient to select against
discrimination. Additional variation was explained
by interactions of cost of escape with other variables.
The cost of escape also interacted with predator
lethality, as would be expected because lethal predator
should select for animals willing to pay a greater cost to
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Table 2

Effect sizes (partial-eta squares) for significant main effects and interactions calculated from a factorial ANOVA studying the presence of specific

predator on the standard deviation and average predator recognition abilities for terrestrial and aerial predators

Presence of aerial predator Presence of terrestrial predator

Aerial Terrestrial Aerial Terrestrial

Standard deviation of recognition abilities

Mutation rate 0.286 0.203 0.211 0.287

Cost of escape 0.042 0.022 0.023 0.042

Differential predator lethality 0.050 0.050

Specific predator present

Mutation rate*Cost of escape 0.037 0.022 0.023 0.037

Mutation rate*Differential predator lethality 0.050 0.050

Cost of escape*Differential predator lethality 0.046 0.048

Mutation rate*Cost of escape*Differential predator lethality 0.043 0.045

Mutation rate*Specific predator present

Cost of escape*Specific predator present

Mutation rate*Cost of escape*Specific predator present

Differential predator lethality*Specific predator present 0.018

Mutation rate*Differential predator lethality*Specific predator present 0.017

Cost of escape*Differential predator lethality*Specific predator present

Mutation rate*Cost of escape*Differential predator lethality*Specific predator present

Average recognition abilities

Mutation rate 0.237 0.181 0.188 0.236

Cost of escape 0.038 0.018 0.019 0.037

Differential predator lethality 0.049 0.049

Specific predator present

Mutation rate*Cost of escape 0.031 0.018 0.018 0.031

Mutation rate*Differential predator lethality 0.048 0.047

Cost of escape*Differential predator lethality 0.041 0.043

Mutation rate*Cost of escape*Differential predator lethality 0.038 0.039

Mutation rate*Specific predator present

Cost of escape*Specific predator present

Mutation rate*Cost of escape*Specific predator present

Differential predator lethality*Specific predator present 0.020

Mutation rate*Differential predator lethality*Specific predator present 0.018

Cost of escape*Differential predator lethality*Specific predator present

Mutation rate*Cost of escape*Differential predator lethality*Specific predator present

Standard deviation of recognition abilities is a metric of relaxed selection and average recognition abilities is a measure of directional selection. More

variation in recognition abilities was explained by relaxed selection (R2
terrestrial; aerial present ¼ 0:292; R2

terrestrial; terrestrial present ¼ 0:324;
R2

aerial; terrestrial present ¼ 0:389; R2
aerial; aerial present ¼ 0:387), than by directional selection (R2

terrestrial; aerial present ¼ 0:264; R2
terrestrial; terrestrial present ¼ 0:297;

R2
aerial; terrestrial present ¼ 0:336; R2

aerial; aerial present ¼ 0:340) suggesting that changes in these parameters act primarily by relaxing selection for recognition

abilities.
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escape. And, the cost of escape interacted with mutation
rate because if the mutation rate was relatively low,
escape costs should become relatively more important in
explaining the persistence of predator recognition
abilities.

We simulated predator lethality by varying the speed
of the predators. The effects of differential predator
lethality varied depending upon the presence of pre-
dators. When we analysed the effect of any predator
present, differential predator lethality explained varia-
tion only in aerial predator recognition. When we
examined the effects of the presence of specific
predators, we found variation in differential lethality
had its effects on recognition abilities for the specific
predator present. Thus, variation in lethality influenced
aerial predator recognition abilities when aerial pre-
dators were present, and terrestrial predator recognition
abilities when terrestrial predators were present.

While the presence of predators was not the most
important factor explaining persistence of predator
recognition abilities, the way in which the presence of
specific types of predators influenced both the average
and standard deviation of terrestrial, but not aerial
predator recognition lends some support for the multi-
predator hypothesis. Specifically, the multi-predator
hypothesis predicts linkage, and linkage would predict
that the presence of one predator would affect recogni-
tion abilities for the predator not present. When
terrestrial predators were present, aerial predator
recognition abilities were greater and less variable,
suggesting that the presence of terrestrial predators
was sufficient to maintain antipredator behavior for
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aerial predators. This is the opposite of what was
hypothesized to occur with tammar wallabies (Blum-
stein and Daniel, 2002), but nonetheless illustrates the
potential importance of predators on the antipredator
behavior for other predators.

In conclusion, we found that costs of maintaining
antipredator behavior are relatively more important
than the presence of predators in explaining variation in
predator recognition abilities in a situation where
predation risk was relaxed by removing predators. We
also found that the presence of one predator can
influence predator recognition abilities for a predator
no longer present. Thus, our results provide some
support for the multi-predator hypothesis.

In general, our results suggest that a deeper under-
standing of the costs of discrimination is essential to
understand the conditions under which antipredator
behavior persists. Identifying such costs will require
comparisons of individuals with different evolutionary
histories of predator exposure. Antipredator behavior
often varies geographically, and researchers can capita-
lize on such variation (e.g. Foster, 1999; Krause and
Ruxton, 2002; Beauchamp, 2004). Responses need not
be innate (Griffin et al., 2000), and we know that
experience with predators can rapidly restore antipre-
dator behavior lost over evolutionary time (e.g. Hunter
and Skinner, 1998; Berger et al., 2001; Laundré et al.,
2001). In general, we might expect that the removal of a
predator that selects for a high-cost response will have
different effects on the persistence of antipredator
behavior than the removal of a predator with a low-
cost response. Over time, species are exposed to different
types of predators, and populations are exposed to
different subsets of predators (e.g. Reimchen, 1994). We
might expect pleiotropy and/or linkage to evolve in
situations where the costs of different traits are relatively
equal.
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