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There has been a recent flurry of theoretical, empirical, and

comparative research in the remarkably integrative field of

animal escape behavior. We highlight several new insights,

mostly those that have emerged from the economic study of

flight initiation distance (FID). Recent theoretical developments

have shown that the logic applied to understanding FID also

applies to other situations and that escape behavior is influenced

by its benefits and costs, but the importance of these factors

varies by taxa. In some cases, escape behavior is part of a

compensatory response animals use to manage risk. Escape

behavior varies geographically and can be used to inform wildlife

management.
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Introduction
Since virtually all animals are vulnerable to predation at

some point in their lives, those that are ambulatory will

likely use escape as an antipredator strategy. Successful

escape is essential and predation risk should create a

strong incentive for making wise escape decisions. Since

1986 when Ydenberg and Dill’s seminal paper on the

economics of escape behavior was published [1�], the

hypothesis that individuals trade-off the costs and ben-

efits of escape has been overwhelmingly supported. Most

of the work has focused on the distance a threatening

stimulus (often a human) can approach a prey before it

begins to flee, the flight initiation distance (FID). A

recent edited volume that synthesized and reviewed

contemporary literature on escape behavior reported that

annual numbers of published escape papers and citations

are rapidly increasing [2��, Fig. 1.1], We focus this review on

novel insights into escape decisions published since 2013,

emphasizing FID. After reviewing recent theoretical and
Current Opinion in Behavioral Sciences 2016, 12:24–29 
empirical advances, we summarize a series of emerging

conclusions.

New theoretical insights
Economic models predicting FID from costs of fleeing

and not fleeing are more fully developed than models of

other escape variables (e.g., escape trajectory, distance

fled, latency to flee, hiding time in refuge, etc.), and have

been strongly supported by extensive empirical work

[2��,3�]; (Box 1). Perhaps the greatest challenge for the

economic model of FID was faced over a decade ago [4]

when many studies found that FID of most taxa increases

positively with alert distance, which is the distance the

prey first responds by looking toward a predator. But

whether this finding is consistent with an economic

decision by prey was uncertain. Nevertheless, a recent

model, seemingly supported by empirical evidence, pro-

vides an economic explanation for this ubiquitous rela-

tionship: FID increases with alert distance because of

increased attentional costs of monitoring an approaching

predator [5�]. It occurs because potential benefits of

current activity (e.g., foraging) decreases while prey re-

direct their limited attention to monitoring an approach-

ing predator and because perceived risk increases as the

duration of a predator’s approach increase [5�]. Proper

methods to quantify the effect of alert on FID have been

developed recently [6].

Current economic models [1�,7] cannot predict FID ex-

actly because their currency is fitness and the exact rela-

tionship between model variables and fitness are

unknown. However, a recent experiment operationalized

fitness by using the probability of prey’s survival as a proxy

for fitness [8]. The result of this study indicated that the

shape of the cost of not fleeing curve matched the first

economic [1�] and optimality models [7], but also sug-

gested that the relationship between FID and survival was

quadratic rather than exponential [8]. Although converting

probability of survival curves to cost of not fleeing curves is

a promising approach, some important points must be

clarified. The Ydenberg and Dill economic model [1�],
being graphical, does not imply any specific functional

relationship between FID and cost of not fleeing. And,

although the optimality model specifies the functional

relationships for fitness consequences of each possible

choice of FID, these relationships are theoretical and

illustrative, rather than being based on empirical evidence.

Moreover, the survival curve from the optimality model

appears to have been inappropriately treated as a cost of

fleeing curve in this recent study [Fig. 4 in 8]. Predictions
www.sciencedirect.com
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Box 1 When a predator encounters a prey it must make a

number of decisions.

The prey may detect it but elect to not respond in an overt way,

respond in an overt way by modifying its current behavior and

focusing its attention on the predator, and flee. Once the prey flees, it

must make additional decisions about its escape angle, how far to

flee, how long to remain hidden (for those that hide), as well as how

long to wait before resuming its previous behavior. All of these

decisions can be modeled using the logic initially developed by

Ydenberg and Dill [1�]. In economic models of flight initiation

distance (FID), prey flee immediately in zone I (0 � d � dmin, where d

is distance and dmin is the shortest distance where escape is

immediate), assess costs of fleeing and of not fleeing in zone II

(dmin � d � dmax, where dmax is the greatest predator–prey distance

at which prey begin to assess costs), and do not monitor and may

not detect predators in zone III (d > max). The predicted flight

initiation distances are d* for a prey whose escape decisions are not

influenced by alert distance (AD) and d*M for prey whose FID is

affected by monitoring the predator’s approach. The distance over

which the prey monitors the predator is the assessment interval (AI),

shown for prey whose FID is longer due to monitoring. The shape of

the curves is idealized; many factors can influence the costs of not

fleeing and the costs of fleeing. Based on [1�] and [4]. Figure and

legend modified from [5�].
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of the two models are much more similar when both are

based on cost of fleeing.

Traditional economic models predict FID when a preda-

tor approaches an immobile prey [1�,8] and time spent

hiding (hiding time) in a refuge after an approach [9].

New models extend predictions to three other scenarios:

(1) latency to flee is predicted when an immobile prey

detects an immobile predator; (2) the closest approach

distance is predicted for a prey approaching an immobile

predator, and (3) FID is predicted when the predator and

prey approach each other [10��]. These scenarios require

more empirical tests.

Since escape is a game between predators and prey, game

theory is a useful way to understand escape decisions.

Recent models have shown that the probability that a

predator attacks is reduced if a prey honestly signals its

escape ability [10��]. This reduced risk implies that FID

should be shorter for signaling prey [10��]. More work
www.sciencedirect.com 
needs to focus on the predator’s interactive response to

prey. Here we consider a related, but slightly separate

issue, the advances in understanding how prey integrate

multiple aspects of their overall antipredator response to

predators. Another application of game theory posits that

prey subject to being discovered and pursued by a pred-

ator may choose to be hard to find or to occupy sites where

they are hard to catch if attacked. The model predicts that

hiding in random locations is predicted to be increasingly

favored as the frequency of being pursued increases.

Being hard to catch is favored when the frequency of

being attacked is low [11�].

Are escape behaviors repeatable and are they
part of an escape syndrome?
The literature on personality and behavioral syndromes

has rapidly expanded in recent years and FID is a com-

mon way to measure ‘boldness’ [12]. If statistically re-

peatable [13], boldness (FID) may be considered a

personality trait. If boldness is correlated with other traits,

it may be part of a behavioral syndrome.

Considerable evidence shows that FID can be repeatable.

For instance, FID of Namibian rock agamas (Agama
planiceps) is repeatable within and between wet and

dry seasons [14]. Burrowing owls (Athene cunicularia) have

remarkably high FID repeatabilities throughout their

adulthood [15]. Such repeatable traits may influence later

survival as nicely shown by earlier mortality during the

hunting season of bold male captive-reared pheasants

(Phasianus colchicus) released into the wild compared to

females [16�]. Moreover, pheasants males that died of

natural causes (including disease) were bolder than their

counterparts that were shot. Crickets too have repeatable

FID associated with survival: bold animals had shorter

lifespans [17]. Similarly, pigeons (Columba livia) that

tolerated closer approach were more likely to be preyed

upon while homing [18�]. More studies need to examine

fitness consequences of FID.

In some circumstances FID may not be repeatable. For

instance, variable FIDs by incubating Eurasian curlews

(Numenius arquata) has been interpreted as part of an

unpredictable ‘surprise strategy’ [19]. Repeatability also

may vary over an animal’s lifetime. For instance, FID was

repeatable in yearling, but not in juvenile or adult yellow-

bellied marmots (Marmota flaviventris) [20]. Such age-

specific variation might be explained by juveniles being

uniquely constrained to gain mass before hibernation so

there is selection against behavioral variation (all individ-

uals should be relatively bold). Similarly, adults might be

selected for behavioral variation across years accounting

for the lost repeatability.

FID is often correlated with other traits, but it need not be

[21]. Some studies correlate various behaviors systemati-

cally, but are not strongly hypothesis-driven. For instance,
Current Opinion in Behavioral Sciences 2016, 12:24–29
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in coyotes (Canis latrans), FID is correlated with latency to

approach a novel object, but not other measured traits [22].

Concrete predictions about syndrome structure can be

made if FID is viewed as a way to compensate for

vulnerability. For instance, a risk-compensation hypothe-

sis was rejected in yellow-bellied marmots: marmots that

ran more slowly than others also tolerated closer

approaches [23�]. Similarly, brightly colored birds did

not flee at greater distances [24].

Biogeographic aspects in prey escape
decisions
Island tameness

Darwin famously conjectured in 1839 that prey on islands

are less wary than their mainland relatives because pre-

dation pressure is reduced on islands [25]. Empirical

interest in this phenomenon has grown because FID

provides a convenient metric for wariness. Island tame-

ness was recently confirmed by a comparative study of

66 lizard species [26��]. Controlling for effects of predator

approach speed and prey body size and using phyloge-

netically informed statistical analysis, FID was shorter for

island than mainland lizards and decreased as distance

from the mainland increased.

New data confirm that FID varies among populations

intraspecifically in lacertid lizards as predicted by level of

predation risk on main islands and associated islets

[27�,28]. Effects were stronger for avian and mammalian

than other predators [27�]. The decrease of FID in

populations increased as the duration of isolation from

predators increased [27�]. In populations exposed to cat

predation, lizards were found closer refuges, another

indication that wariness increases in populations under

strong predation pressure [28].

Geographic variation in fearfulness

A few recent studies have documented geographic varia-

tion of FID. In a study of 714 populations of 159 species of

European birds, FID decreased as latitude increased, in

parallel with a clinal reduction in abundance of their

primary predator–raptors [29]. A pattern consistent with

a latitudinal cline in fearfulness was also found for 447 bird

species on three continents [30]. These findings are con-

sistent with the biogeographical pattern of reduced pre-

dation pressure at higher latitudes [31]. However, novel

findings have demonstrated that effects of latitude differ

between sexes, presumably because of different pressures

on the sexes [30,32]. For example, only female lizards

reduce their FID as latitude increases, probably because

sex-specific environmental constraints more strongly af-

fect the reproductive effort of females than males [32].

Using escape behavior as a conservation tool
A number of advances have occurred in understanding

how escape behavior can be used as a wildlife manage-

ment tool [33�]. For instance, recent studies have shown
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that when exposed to humans, animals modify their

physiology and escape behavior [34–37] and, importantly,

that there can be cascading effects on their populations

and communities. Given that animals commonly flee

from humans, chronic exposure to humans should nega-

tively alter fitness if individuals increase allocation of

limited energy to escape instead of reproduction. Three

empirical studies correlating a population’s FID with its

population trends provide some support for this predic-

tion. Declining species are generally less tolerant of

humans [38��,39�,40]. However, the magnitude and,

sometimes, the direction of the effect may differ among

geographical locations [39�,40].

A comprehensive meta-analysis including 212 species

showed that most birds, mammals and lizards avoid

fitness cost of chronic disturbance by increasing tolerance

(i.e., reducing their FID) to non-lethal human presence

[41��]. For birds, the best studied taxon, the two main

predictors of tolerance were habitat contrasts (urban

versus rural, rural versus suburban, etc. — the most urban

birds were the most tolerant) and body size (larger species

are more tolerant). The body size effect was unexpected

since prior work indicated that larger birds were more

likely to be disturbed by humans [42�]. This suggests that

larger species are more prone to prosper around humans.

Moreover, body size was the strongest predictor of sur-

vival in the cities in another study of 68 urbanized species:

larger birds survive better than smaller birds [43]. Gen-

eralizations like these are important because many man-

agement decisions are species-specific [44].

FID can also be used as a non-invasive index of hunting

pressure. For example, FID of Sooty-headed Bulbuls

(Pycnonotus aurigaster) increased significantly as hunting

pressure increased [45]. Similarly, hunted populations of

impala (Aepyceros melampus) and greater kudu (Tragelaphus
strepsiceros) fled approaching humans at substantially great-

er distances than non-hunted conspecifics [46]. FID has

also been used to study the response of fish on and off

marine protected areas to determine their response to

spear guns, and in one case suggests that animals off

protected areas might be exposed to spear fishing [47].

Escape behavior may shed light on why and how some

animals are more likely than others to be hit by vehicles

[48]. To avoid collision, an animal must detect a vehicle,

assess time to impact, and move out of the way [49]. For

this reason, studies of alert distance and FID have provid-

ed key insights into vulnerability to vehicle collision. Some

species are unable to track increases of velocity above a

certain threshold, and therefore fail to escape [50,51].

Researchers also have used FID to investigate the effect

sound pollution on antipredator ability: intra-specific and

inter-specific communications are important sources of

information for predation risk assessment [52,53]. For
www.sciencedirect.com
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Table 1

Recent work has contributed to emergence of several generalizations about escape behavior. These are shown with suggestions for

advances for each. FID, flight initiation distance.

Generalization Research needs

Theory successfully predicts FID and applies to more

scenarios than previously considered.

Measurement of fitness costs.

Modeling joint effects of cost factors.

Escape behavior is sensitive to both costs and benefits

of fleeing, but the importance of these costs varies by taxa.

A systematic investigation by taxa.

Escape behavior is part of a syndrome of escape traits that

in some cases illustrates compensatory responses.

Hypothesis-driven studies.

Escape behavior is sometimes, but not always,

individually repeatable.

What drives personality variation in escape behavior?

Isolation on islands affects escape behavior. Does island tameness occur in other taxa? Effects of isolation time.

Empirical investigation of the mechanism behind sex-specific variation

of escape response along latitudinal gradients.

Escape behavior varies geographically. Why does the relationship between FID and population trend vary among

geographical regions?

Escape behavior can be used to inform wildlife management. More multi-species studies to permit generalizations to inform

wildlife managers.

How do we understand ‘filtering processes’ that prevent us from

studying escape behavior in species that do not coexist with humans?
example, house sparrows (Passer domesticus) exposed to

traffic noise while in their nests flushed earlier than non-

disturbed individuals, suggesting compensation for re-

duced ability to assess risk [54].

Conclusion
We believe that the economic study of escape behavior

illustrates tremendous successes in the scientific method

[2]. Models have been developed and predictions evalu-

ated. These results have generated model refinement and

more empirical studies. Both comparative analyses and

meta-analyses have helped identify relatively important

factors influencing escape and large-scale evolutionary

patterns. And the results have been used to inform

wildlife conservation and management. All this began

with a simple, elegant, and very timely model [1�,55].

Our review has been selective. We have not discussed the

FEAR [6,56�,57,58�,59,60] and DREAD [61�] hypotheses,

for which there seem to be compelling support. We have

not discussed additional insights about how life history

traits influence escape behavior. Nonetheless, our selec-

tive review has illustrated how the integrative study of

escape behavior has been remarkably productive. For the

topics we focused on, we summarize some generalizations

in Table 1 and suggest unanswered questions. We hope

that this will help guide future studies of escape behavior.
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