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ABSTRACT: Species that scavenge on dead animals
are exposed to enhanced disease risks. Eight
hypotheses have been suggested to explain how
scavengers avoid becoming sick from their diet.
We conducted a systematic review of the litera-
ture and found correlative support for four of the
eight hypotheses but limited evidence of system-
atic studies of the hypotheses. We found no
support that using urine to sterilize carcasses,
having bald heads, eating rapidly, or food-washing
behavior reduced disease risk in carrion eaters.
With the exception of food washing, none of these
hypotheses have been properly evaluated as an
adaptation to avoid sickness from carrion. There is
some support for having a specialized micro-
biome, having enhanced immunologic defenses,
avoiding rotten food, and maintaining a low
gastric pH to eliminate pathogens. Specialized
immunologic defenses and having a low pH have
the most support, but the diversity of mechanisms
suggests that there is a great opportunity for even
more detailed study. Increased knowledge in
these mechanisms may provide biomimetic in-
sights to help combat foodborne illnesses and
enhance health.
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Introduction

Obligate and facultative scavengers are
exposed to pathogens and toxic by-products
of microbial metabolism. Eight hypotheses
have been suggested to explain how scaven-
gers avoid becoming sick from their diet.
Understanding the diversity of these mecha-
nisms is important because scavengers can
disperse pathogens over long distances as they
search for their next meal (Houston and
Cooper 1975; Ohishi et al. 1979), scavengers
play an important role in nutrient cycling in
many ecosystems (DeVault et al. 2003, 2004),
and from a biomimetic perspective (Benyus
1997), some of their defense mechanisms

could potentially be used to improve human
and veterinary medicine (Shaharabany et al.
1999). We systematically reviewed the litera-
ture on potential scavenger defense mecha-
nisms and evaluated available evidence. We
created search terms separately for eight
previously hypothesized defense mechanisms:
1) taste before eat (Houston 1986); 2)
specialized microbiome (Roggenbuck et al.
2014); 3) acid sterilization (Kushawha et al.
2009); 4) selective digestive tract (Wink 1995;
Roggenbuck et al. 2014); 5) avoid rotten food
(Houston 1986); 6) bald heads (Wink 1995); 7)
specialized immune system (de la Lastra and
de la Fuente 2007); and 8) rapid ingestion
(Houston and Cooper 1975).

We systematically reviewed articles on
carrion eaters’ adaptations by using the Web
of Science database (see PRISMA diagram in
Supplementary Material). For each search
topic, we narrowed the search by adding
additional words until output was fewer than
300 articles; more inclusive searches yielded
irrelevant articles. We first read the title and
abstract of every article in the combined
output. If the title or abstract mentioned a
scavenger species, the words carrion, adapta-
tion, feeding, behavior, or any other terms
relevant to a hypothesized defense mecha-
nism, we then read the full paper. For each
included paper, we reviewed the bibliography
of all articles and identified additional relevant
papers. For all relevant papers, we also
examined articles that cited these papers. A
total of 30 papers provided some evidence for
one or more hypothesized mechanism. Al-
though popular articles and books suggest that
carrion eaters have a variety of adaptations to
avoid becoming sick, most evidence we found
was correlative and focused on specific
abilities in one or a few taxa. There were
relatively few controlled experiments de-
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signed to properly test these hypotheses and
determine whether these specific abilities are
restricted to specific taxa. We discuss the
evidence for each in the following.

Enhanced immunologic defenses

The best-supported defense mechanism
involves specialized immunologic defenses
toward pathogens encountered while scaveng-
ing. Animals are born with innate immunity
(Cohen 1970), which includes physical barri-
ers, such as skin, and immune surveillance
adaptations, such as natural killer cells and
phagocytic leukocytes. Later, animals acquire
adaptive immunity (Abbas and Lichtman
2010), based on exposure to specific patho-
gens; this includes lymphocytes.

Seven case studies evaluated hypothesized
immune mechanisms in mammals, birds, and
reptiles (see Supplementary Table 1). These
studies indicate that vultures have enhanced
innate immunity that separates them from
nonscavengers (de la Lastra and de la Fuente
2007). Research identifies differences be-
tween scavengers and nonscavengers in toll-
like receptor (TLR) proteins (de la Lastra and
de la Fuente 2007). The TLR proteins are a
recognition receptor for pathogenic agents,
and these proteins are a relatively well-studied
innate immunologic mechanism. Vultures
have specialized TLR1 proteins (de la Lastra
and de la Fuente 2007), but TLR sequences
and expression of facultative scavenging hye-
nas (Hyaenidae) were not significantly differ-
ent than those found in other mammals (Flies
et al. 2014). Vultures also possess a modified
TANK binding kinase 1 protein (Chung et al.
2015) that enhances immune activity by
stimulating interferon regulatory factors
(IRF-3 and IRF-7) to prepare for a viral
infection (tenOever et al. 2004). Alligators
(Alligator mississippienis) kill and scavenge
their food (Grigg and Kirshner 2015) and have
leukocytes with antifungal properties against a
variety of fungal pathogens. Their leukocytes
also successfully inhibit the growth of 9 out of
11 tested pathogenic bacteria and have
antiviral properties against human immuno-

deficiency virus and herpes simplex virus
(Merchant et al. 2006).

Scavengers may also have enhanced adaptive
immunity. Obligate scavengers, such as vul-
tures, have more natural antibodies against
botulinum toxin than do facultative scavengers
(Ohishi et al. 1979). The development of
botulinum antibodies is still an open question,
and Ohishi et al. (1979) suggested that
individuals exposed to botulism at an early age
develop immunity. Merchant et al. (2013)
studied the antibiotic-forming capabilities of
captive Komodo dragons (Varanus komodoensi)
and found their serum significantly inhibited
the growth of gram-negative bacteria. However,
not all facultative scavengers seem to be
specialized. In a study comparing antibody
responses in spotted hyenas (Crocuta crocuta)
and domestic cats (Felis catus), there were no
significant differences in magnitudes and pat-
terns of humoral responses (Flies et al. 2012).

Low gastric pH

Vultures and some other scavengers have an
especially low gastric pH that kills pathogens
ingested from carrion (Houston and Cooper
1975), and there is evidence for selection of
genes involved in the gastric acid secretion
pathway in at least two species of vultures
(Chung et al. 2015). Facultatively scavenging
albatrosses (Diomedea exulans) also have low
gastric pH, but this may also be an adaption for
patchily distributed food, which requires rapid
digestion for large meals (Grémillet et al. 2012).

Rapid ingestion

Houston and Cooper (1975) suggested that
vultures eat quickly to prevent bacteria from
forming spores. We found no evidence that
this hypothesis has been scientifically evaluat-
ed. Indeed, feeding competition could select
for rapid ingestion.

Acidic sterilization

Kushwaha et al. (2009) suggested that
vultures release uric acid on their legs to kill
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pathogens they acquire while feeding and for
cooling themselves. However, Hatch (1970)
identified thermoregulatory benefits that tur-
key vultures obtained by wetting their legs
with uric acid. We found no studies that
formally tested whether urine or uric acid kills
carrion-acquired pathogens.

Avoiding rotten food

Houston (1986) observed that turkey vul-
tures avoided rotten food by recording the
time it took for scavengers to find carcasses
and the proportion of the carcass eaten. The
proportion of the carcass eaten varied with
carcass age. Turkey vultures primarily relied
on their acute olfactory senses to locate food
(Stager 1964); thus, some decomposition
assists location, but when given a choice,
vultures prefer 1-d-old carcasses over 5-d-old
carcasses (Houston 1986). In contrast, brown
tree snakes (Boiga irregularis) are more likely
to eat a 2-d-old carcass over a 1-d-old carcass
(Jojola-Elverum et al. 2001). Jojola-Elverum
et al. (2001) hypothesized that brown tree
snakes either actively seek rotten food or they
are unable to find carrion that has not rotted.
Brown tree snakes are hypothesized to have
evolved salivary secretions that are specialized
to neutralize toxic by-products of microbial
metabolism within rotting food (Shivik 2006).

Bald heads

Although suggested in the popular litera-
ture (Stone 1993), we found no empirical
evidence to support the hypothesis that bald
heads are an adaptation to avoid becoming
sick by facilitating cleanliness. Rather, two
studies (Larochelle et al. 1982; Ward et al.
2008) provide evidence that baldness is a
thermoregulatory adaptation.

Food washing

We found only two articles that studied
whether washing food prior to consumption
by scavengers reduces infection risk; neither
supported this hypothesis. In nonscavenging

macaques (Macaca fuscata fuscata), individu-
als that washed their food had reduced
geohelminth infections (Sarabian and MacIn-
tosh 2015). However, a critical analysis of food
washing in raccoons (Procyon lotor), a facul-
tative scavenger, found no evidence support-
ing an antidisease function. Lyall-Watson
(1963) suggested washing simulates catching
live prey, and this stimulates their appetite
when eating carrion. More studies, such as
those conducted with macaques (Sarabian and
MacIntosh 2015), are warranted.

Microbiome

A specialized facial and gut microbiome
may prevent population growth of pathogens.
Vultures are exposed to fusobacteria and
clostridia in their diet, and their hindgut
microbiome is less diverse than their facial
microbiome, suggesting that bacteria are
either killed or outcompeted in the gut
(Roggenbuck et al. 2014). Moreover, New
World vultures have similar microbial com-
munities, suggesting that certain microbial
communities may be an adaptation to avoid
diet-induced illness (Roggenbuck et al. 2004).

Summary

Despite its popular appeal, we found no
consistent support that behavioral defenses
are mechanisms that help scavengers avoid
becoming sick when they eat carrion. How-
ever, we found some support that physiologic
defenses have evolved to avoid sickness. We
acknowledge that very few studies directly and
formally evaluated these hypotheses in scav-
engers and that a recent study of food washing
in a nonscavenger found that washing food
reduced infection (Sarabian and MacIntosh
2015). We also acknowledge that some
conclusions are pathogen specific. Nonethe-
less, this systematic review summarizes the
current state of knowledge and identifies
knowledge gaps, among them the need for
properly designed studies to evaluate formally
these hypotheses in multiple species.
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More studies of microbial defenses are
likely to be promising and may help create
novel applications in both human and
veterinary medicine. There is the potential
to incorporate TLR expression to reduce
susceptibility to specific pathogens. There is
also bioprospecting potential in copying the
distinct components of vulture TLR pro-
teins. Although the function of the TLR1
structural differences has not been charac-
terized, in FGriffon vultures, highest TLR1
expressions were in locations integral to
immunologic defenses, including the kidney,
small intestine, and peripheral blood mono-
nuclear cells. Thus, we encourage further
research of the function of TLR structural
differences, which may ultimately lead to
biomimetic applications, depending on what
future findings suggest. Further study of the
amino acid sequence polymorphisms of the
TANK binding kinase 1 of the immune
pathway could also have medicinal applica-
tions.
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