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Summary

1. Common ecological tasks, such as wildlife monitoring, adaptive management, and behavioural

study, often make use of natural signatures (e.g. animal calls or visual markings) to identify individ-

ual animals noninvasively. However, there is no accepted method for pre-screening candidate

natural signatures to select which signatures are the best-suited for this purpose. In this paper, we

suggest a pre-screening checklist and focus on the challenge of assessing a candidate signature’s

individuality.

2. Individuality is critical, as the use of low-individuality natural signatures can lead to misidentifi-

cation of individuals and therefore bias estimation of population parameters and population

response to management actions. An information-based metric of individuality could assist

researchers with selecting suitable signatures by allowing comparison among candidate signatures

and providing an estimate of howmany individuals may be reliably discriminated using a particular

signature.

3. Before an individuality metric can be used to pre-screen natural signatures, the metric must first

be calculated from preliminary sampling and must be robust to typical sampling concerns. We used

field-collected animal vocalizations as well as simulations to test how robust the metric is to varia-

tion in sampling design.

4. We found that the metric is fairly robust to the number of animals sampled and the number of

sessions (e.g. callingbouts) analysed, but that it is sensitive to thenumberofobservations per session.

5. Synthesis and applications. Managers and researchers could save time and energy and improve

the accuracy of estimates (such as abundance, survival, or population response) based on individual

identification by first pre-screening candidate natural signatures for their individuality. As long as

the number of observations per session is controlled, the relative values of the individuality metric

can be meaningfully compared. Themetric can thus be used as a tool to estimate relative individual-

ity and so facilitates a difficult step in choosing a natural signature for noninvasive individual identi-

fication.We include instructions on how to calculate and interpret the individualitymetric.

Key-words: censusing, individuality, individual discrimination, information theory, marking,

signature, vocalization

Introduction

Many ecological studies and wildlife conservation and man-

agement applications require reliable identification of individ-

ual animals. Individual identification allows researchers to

examine population response to management actions, acquire

detailed life histories, track site fidelity and turnover, determine

survivorship, conduct post-release follow-ups, estimate abun-

dance and population size, and note individual differences in

behaviour, condition, and conservation value (McGregor &

Peake 1998; Galeotti & Sacchi 2001). Individual identification

is valuable in direct monitoring and particularly important for

calibrating indirect monitoring methods (such as counting

tracks or nests,McGregor & Peake 1998).

Artificial markings such as numbered leg bands or fin tags

are widely used for individual identification; however, artificial

tagging is laborious, often expensive, and may disrupt the

animals’ behaviour, physiology, and habitat (Pennycuick &

Rudnai 1970; Hare 1994; Baptista & Gaunt 1997; McGregor

& Peake 1998; McGregor, Peake & Gilbert 2000; Hartwig
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2005; Cattet et al. 2008), so the use of naturally-occurring sig-

natures is often desirable. Noninvasive individual identifica-

tion, using natural signatures, can circumvent some costs

associated with artificial tagging (Baptista & Gaunt 1997; Lu-

bow&Ransom 2009).

There are multiple types of natural signatures. Individuals

of many species, such as marine mammals or terrestrial carni-

vores, can be noninvasively identified with natural visual

markings such as whisker spots or scars (Pennycuick&Rudnai

1970; Friday, Smith & Stevick 2000; Markowitz, Harlin &

Würsig 2003; Evans & Hammond 2004; Anderson, Roth

& Waterman 2007; Gallardo-Escarate, Goldstein-Vasquez &

Thiel 2007; Gilkinson et al. 2007). However, many species are

difficult to visually detect or discriminate (Saunders &Wooller

1988; Peake et al. 1998; Aldrich, Molleson & Nekaris 2008).

Noninvasive genetic sampling has also become popular, but is

expensive (Schwartz, Luikart & Waples 2007). Furthermore,

genotyping error can introduce bias into estimates of popula-

tion size or resighting frequency (Mills et al. 2000; Creel et al.

2003; Bonin et al. 2004; Nichols & Williams 2006; Schwartz,

Luikart &Waples 2007; Soulsbury et al. 2007). Acoustic sam-

pling is an attractive option when animals are visually cryptic,

nocturnal, or living in difficult terrain (e.g. Gilbert, McGregor

& Tyler 1994; Jones & Smith 1997; Peake et al. 1998; Galeotti

& Sacchi 2001; Tripp & Otter 2006). Acoustic signatures have

been used to noninvasively individually identify or census a

wide variety of birds and mammals including African wild

dogs (Lycaon pictus, Hartwig 2005), titi monkeys (Callicebus

oenanthe, Aldrich, Molleson & Nekaris 2008), kingfishers

(Halcyon sancta, Saunders &Wooller 1988), owls (Otus scops,

Galeotti & Sacchi 2001;Aegolius acadicus brooksi,Holschuh&

Otter 2005; Megascops kennicottii, Tripp & Otter 2006), fly-

catchers (Empidonax traillii extimus, Fernandez-Juricic, del

Nevo & Poston 2009), and corncrakes (Crex crex, Terry,

McGregor& Peake 2001).

Noninvasive individual identification can only be effective if

several conditions are met. First, the animals must possess a

signature trait that is sufficiently individualistic to permit indi-

vidual identification of the animals based on that trait. Addi-

tionally, the manifestations of this signature trait must be

stable within the time-scale of the intended work, and the trait

must be something that can be sampled multiple times (e.g.

re-sighting). Practical concerns are important as well; an ideal

signature trait is one that can be sampled and re-sampled

frequently and easily. An ideal signature trait is thus visually,

acoustically, or otherwise salient, and it should manifest fre-

quently (e.g. a vocalization or dance) if not continually (e.g. a

coat pattern). It is relatively straightforward to evaluate candi-

date signature traits for salience or ease of sampling. Our study

therefore addresses the first and more difficult criterion: indi-

viduality. There is currently no standardized way of measuring

a trait’s individuality, nor a standard means of pre-screening

candidate traits to see if sufficient individuality is present to

permit effective noninvasive individual identification.

This is a critical problem. The use of low-individuality traits

can lead to inaccurate estimates of site fidelity, survivorship,

and population size (Gilbert, McGregor & Tyler 1994; Jones

& Smith 1997; Holschuh & Otter 2005; Lubow & Ransom

2009). For example, individual identification has been central

in mark–recapture studies that employ resighting ⁄ recapture
of individuals to estimate abundance or survival rates. Mark–

recapture based estimators of abundance or survival rates

require the assumptions that marks are not lost or

overlooked, and that individual identity is recorded correctly

(Williams, Nichols & Conroy 2001); violations of these

assumptions cause known biases. If more than a single animal

has a specific signature mark (i.e. if signatures do not differ

sufficiently between individuals), then the assumption that

marks are unique is violated (e.g. Mills et al. 2000). The result

of marks not being unique is that detection rate and apparent

survival rate would be overestimated and abundance would

be underestimated. Conversely, if signatures are not suffi-

ciently consistent within individuals, then single animals may

mistakenly be classified as multiple animals (e.g. Creel et al.

2003). This would lead to an underestimate of apparent sur-

vival rate and detection rate, and an overestimate of abun-

dance. Inaccurate estimates of abundance and survival can

lead to inappropriate adaptive management decisions, such as

relaxing conservation concern when a population is still at

risk or channelling limited funding into a project that is less

critical (see also Caughley & Sinclair 1994). Without a reliable

means of estimating the individuality in a natural signature,

researchers are ill-equipped to select the most suitable natural

signatures to minimize these errors.

All individual identification relies on the same statistical

foundation: a signature or marker is useful for identifying indi-

viduals when the variation within individuals is low relative to

the variation among individuals. Animals must be self-consis-

tent in the focal trait, and individual animals must differ from

one another in that focal trait (Pennycuick & Rudnai 1970;

Pennycuick 1978; Beecher 1982, 1989; McGregor & Westby

1992; Jones & Smith 1997; Anderson, Roth & Waterman

2007). Researchers employ a variety of methods to measure

this individuality. The most popular method is discriminant

function analysis (DFA, McGregor, Peake & Gilbert 2000).

(For examples of use, see Gilbert, McGregor & Tyler 1994;

Jones & Smith 1997; Peake et al. 1998; Galeotti & Sacchi 2001;

Hartwig 2005; Holschuh & Otter 2005; Tripp & Otter 2006;.)

The DFA techniques determine the success of classifying sam-

ples within a known set and allow assessment of whether a sig-

nature trait is individually distinctive (McGregor, Peake &

Gilbert 2000). The common method of interpreting discrimi-

nant function results is, however, problematic (see Mundry &

Sommer 2007), and often leads to overestimating individuality

in a given signature trait. Furthermore, DFA cannot answer

the question of greatest practical importance to ecological

researchers and managers: it cannot quantify how many indi-

vidual animals may be distinguished (see also McGregor,

Peake & Gilbert 2000). An alternative metric, Beecher’s infor-

mation statistic for individuality (Beecher 1982, 1989), can

answer this question.

Beecher’s information statistic quantifies individuality in

terms of information theory (Shannon & Weaver 1949) and

has been used to measure trait individuality in birds (Medvin,
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Stoddard &Beecher 1993), bats (Wilkinson 2003), and rodents

(Blumstein &Munos 2005). The information statistic equation

is as follows:

Hi ¼ log2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fþ n� 1

n

r
eqn 1

where F is the F statistic from an ANOVA grouped by

individual animal, n is the number of individual animals

in the sample, and Hi is the individualistic information

content for trait i (Beecher 1989).

The information statistic calculates how individualistic the

measured signature traits are, in terms of how many binary

decisions must be made to reduce the initial uncertainty about

identity down to only the within-individual variation. Traits

with higher values of Beecher’s information statistic are more

individualistic and thus may be more useful for noninvasive

individual identification than traits with lower values.

The information statistic’s units are expressed in bits,

representing the number of these binary decisions (see also

Pennycuick 1978). These multipurpose, information-based

units provide Beecher’s statistic with the ability to sum individ-

uality across not only various types of traits within a signal,

but also the ability to compare individuality across signal

modalities, across species, and across studies. The sum of the

Hi for a signal type is designatedHs.

Hs ¼ RHi eqn 2

Signal types (e.g. a particular type of vocalization) with

higher values ofHs will bemore useful for individual identifica-

tion purposes than signal types with lower values.A signal type

with a higherHs value carries more individualistic information

content (more individuality) than a signal type with a lowerHs

value (e.g. a long-distance contact call vs. a close proximity

aggressive display). Similarly, for a given signal type, a species

with a higherHs value for that signal type is more individualis-

tic for that signal than a species with a lowerHs value.

Importantly, Beecher’s information statistic can be used to

estimate the number of individuals a particular signature trait

can distinguish, given a certain level of acceptable error (Bee-

cher 1989) :

Hs ¼ log2 N� log2 p eqn 3

where N is the number of individual animals distinguish-

able and P is the probability that a target individual’s sig-

nature is also held by another individual in the group.

Equation 3 has direct applicability to individual identifica-

tion and monitoring tasks, as it indicates the maximum

number of individuals the focal trait could discriminate.

Simple rearrangement of equation 3 yields:

N ¼ P� 2Hs eqn 4

The Hs statistic has great potential applicability for screen-

ing natural signatures for their usefulness in noninvasive

individual identification; Hs estimates from candidate signa-

tures can be compared for insight as to which signature is more

individualistic. Hs estimates from different species can also be

compared for insight as to which species would be most ame-

nable to noninvasive individual identification using a given sig-

nature.

To estimate Hs, researchers must first sample the candidate

signal type over multiple sessions from multiple individuals of

known identity. Hs has been estimated this way in swallows

(Hirundo spp., Medvin, Stoddard & Beecher 1993), bats (Mic-

rochiroptera, Wilkinson 2003), and marmots (Marmota flavi-

ventris, Blumstein & Munos 2005). However, these studies

vary greatly in their sample size and sampling design, and it is

unknown how this may affect estimates of Hs. There are no

standards, nor are there general recommendations, for what

sorts of preliminary sampling researchers should employ to

estimate individuality with Hs. Importantly, the robustness of

the information statistic has not yet been assessed in light of

the data structures field biologists will typically have available

from which to calculate individuality. Until this is determined,

the Hs method of pre-screening candidate signatures or

candidate species cannot be employed to its full potential.

Using a bootstrapped sub-sampling method, we employ

field-collected and simulated data to assess the effects of sam-

pling design perturbations on Beecher’s information statistic

(Hs). We test whether the calculated value of Hs is influenced

by: (i) the number of animals sampled, (ii) the number of ses-

sions (bouts) sampled, and ⁄or (iii) the number of observations

per session sampled. We end by making recommendations on

how to estimateHs from preliminary sampling and how to use

Hs to pre-screen candidate natural signatures or candidate spe-

cies for their usefulness in noninvasive individual identification.

Materials and methods

FIELD-COLLECTED DATA

We assessed the robustness of Beecher’s information statistic (Hs)

by applying it to quantify individuality in natural signatures of two

species of wild rodents. We used field-collected data from our study

species, using what is arguably their most salient individualistic trait:

alarm vocalizations. In ground-dwelling sciurid rodents, alarm vocal-

izations are the loudest acoustic signals produced, and these can be

effectively recorded and re-recorded in the habitat. Alarm calls thus

satisfy the criteria for salience and sampling, as previously discussed.

We then used Hs to assess the extent to which these calls also satisfy

the criterion of individuality.

Species that live in larger social groups are expected to have greater

individuality in their signals than species that live in smaller social

groups (Beecher 1989, 1991; Medvin, Stoddard & Beecher 1993;

Mathevon, Charrier & Jouventin 2003; Wilkinson 2003; Tibbetts

2004; Blumstein & Munos 2005; Pollard 2009). We therefore used a

more social species, Olympic marmots Marmota olympus (Merriam

1898), and a less social species, Richardson’s ground squirrels

Spermophilus richardsonii (Sabine 1822), to test Beecher’s information

statistic across a range of individuality (Blumstein & Armitage 1998).

For each species, we selected high-quality recordings of vocal alarm

calls from 10 adult females, recorded across two recording sessions

(calling bouts) each, with 10 calls extracted and measured from each

bout (for a total of 200 calls per species).

Calls were recorded from a free-living population of Richardson’s

ground squirrels at Assiniboine Park Zoo property in Winnipeg
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(49�52¢ N–97�14¢ W) in 2006, using an Audio-Technica AT815b

microphone and a Sony TCD-D8 digital audio tape recorder with a

sampling rate of 48 kHz. Olympic marmot calls were recorded at

Olympic National Park inWashington (at and near 47�49¢ N–123�13¢
W) in 2004 and 2005, using an Audix OM 3 microphone and a Sony

WM-D6C audio tape recorder. For both species, researchers elicited

calls by standing near the live-trapped animals (see Blumstein &

Munos 2005).

We digitized alarm call recordings to 16-bit, 48 kHz AIF files, then

normalized each call to 95% maximum amplitude using Sound Edit

16 (Macromedia 1995). Using Canary 1Æ2Æ4 (Charif, Mitchell & Clark

1995), with consistent settings (spectrogram: fast Fourier transforma-

tion, FFT, size = 1024 points, overlap = 99Æ61%, frame length =

256 points, clipping level = )80 dB, window function = Blackman,

amplitude = logarithmic, display style = boxy; spectrum: FFT

size = 512 points, overlap = 99Æ8%, frame length = 512 points,

clipping level = )80 dB, window function = Blackman, ampli-

tude = logarithmic), we measured 46 different call characteristics in

Olympic marmots and 33 in Richardson’s ground squirrels, including

measurements in the time, frequency, and relative amplitude dimen-

sions (see Appendix S1, Supporting Information for details). All

spectrogram measurements were made while displaying only the

loudest 40 dB of the call.

STATIST ICAL ANALYSES

We standardized the raw data according to Beecher (1989), after

which we used spss 13Æ0 (SPSS Inc. 2004) to calculate principal com-

ponents (minimum eigenvalue = 0Æ01, 25 iterations, correlation

method; see Appendix S2, Supporting Information). Using equations

1 and 2, we calculated Beecher’s information statistic (Beecher 1982,

1989) from the principal components, using all F-values that were sig-

nificant at the a= 0Æ05 level.
To address the influence of sampling design on the calculated

information statistic, we re-computed the statistic over a variety of

sampling schemes. Using a bootstrappingmethod, we re-sampled our

data set multiple times under pre-defined sampling regimes. We

designed these regimes to mimic likely data structures collected under

field constraints to identify how Beecher’s information statistic (Hs) is

influenced by sampling effort.

The re-sampling protocol included each combination of the follow-

ing parameter values: three to ten individual animals (A), one to two

observation sessions (calling bouts, B), and two to ten observations

per session (calls per bout, C). For each species, each regime

(A · B · C, e.g. 5 · 1 · 2) was independently and randomly popu-

lated 10 times, to create 10 random iterations per regime. The one

exception was the 10 · 2 · 10 regime, which we iterated only once

(the full dataset). Within a regime iteration, we drew individual calls

at random without replacement. Across iterations and across

regimes, we drew calls at randomwith replacement.

We wrote a Visual Basic macro to populate the regime iterations

and to standardize the data within each iteration (see above).

We then used spss 13Æ0 (SPSS Inc. 2004) and Excel SP3 (Microsoft

Corporation 2001) to calculate Hs for each regime iteration. We

performed multiple regressions on the Hs values to determine which

sampling variations affected the calculated final value and to fit func-

tions to describe the relationship between sampling parameters and

theHs value.

We evaluated the fit of two functions (logarithmic and inverse)

to describe the relationship between calls per bout (C) and Hs.

Logarithmic and inverse functions lend themselves naturally to

the data structure; like Hs, both are diminishing return functions

of the number of calls per bout, C, and are meaningless at

C = 0.

SIMULATED DATA

To remove any possible effects of the particular signal type we used,

and to expand our data set to a very large calls-per-bout sample size,

we also ran the analyses using simulated data. For the simulated data

runs, we modelled a hypothetical signature trait in which each indi-

vidual animal had a unique mean trait value around which observa-

tions were normally distributed with a standard deviation of 1. The

simulated data is modality-free and can be visualized as an acoustic,

visual, olfactory, or other trait. We constructed a simulated species

with high individuality (SimHigh), using minimally overlapping nor-

mal distributions (average distance between consecutive

means = 101), and a simulated species with low individuality (Sim-

Low), using substantially overlapping normal distributions (average

distance between consecutive means = 1). For the complete data set,

we drew 100 observations at random from each normal curve, using

the online Simple Interactive Statistical Analysis (SISA) random

number generator (Uitenbroek 1998), with MINSTD(31 bt) method,

Normal II distribution, and clock as the random seed. Because analy-

ses of field-collected data suggested little effect of either the number of

animals or the number of bouts on Hs, we arbitrarily elected to use

seven animals, each recorded from one bout (i.e. regimes consisted of

the format 7 · 1 · C, where C is the numbers of observations per

bout). We varied the number of observations per bout from 2 to 100.

All other analysis protocols paralleled our analysis of field-collected

data. SimHigh and SimLow may be visualized as different ‘species’,

as described above, or as different candidate signatures within a

species.

Results

For both field-data species, all parameters varied in the sam-

pling design had significant effects on Hs (Table 1). For both

the number of animals and number of bouts, the effect size

(partial g2) was comparatively small. The number of animals

used accounted for only 1% of the total variation inHs in each

species, while the number of bouts accounted for 18% and 3%

of the variation in the Richardson’s ground squirrel andOlym-

pic marmot results, respectively. In contrast, calls per bout

(observations per session) had a dramatic effect on Hs,

accounting for 73–74% of the variation in both species. In

both species,Hs increased with calls per bout.

Table 1. Multiple regression of sampling parameters on the calcu-

lation of Beecher’s information statistic for individuality (Hs)

Richardson’s ground

squirrels Olympic marmots

B P

Partial

g2 B P

Partial

g2

Animals )0Æ035 <0Æ001 0Æ014 )0Æ031 <0Æ001 0Æ011
Bouts 0Æ616 <0Æ001 0Æ175 0Æ244 <0Æ001 0Æ032
Calls per

bout

0Æ421 <0Æ001 0Æ726 0Æ439 <0Æ001 0Æ740

Intercept )0Æ011 0Æ902 0Æ000 0Æ629 <0Æ001 0Æ036
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Using field data, the relationship between calls per bout and

Hs was well-described by logarithmic and inverse functions (R2

values of 0Æ713 and 0Æ623, respectively for Olympic marmots;

and 0Æ672 and 0Æ594 for Richardson’s ground squirrels; all

P < 0Æ001). Simulated data, extended up to 100 observations

per session, revealed a logarithmic function as the bestR2 fit in

both the high-individuality and low-individuality cases

(SimHigh: R2 = 0Æ900, P < 0Æ001, y = 0Æ714 ln x + 6Æ818;
SimLow:R2 = 0Æ913,P < 0Æ001, y = 0Æ700 ln x + 0Æ238).

Discussion

Many ecological studies and applications (such as mark–

recapture studies, population monitoring, behavioural study,

or post-release follow-ups) require discrimination of individual

animals, and noninvasive individual identification via natural

signatures can provide important benefits over other methods.

However, there is a lack of reliable means for evaluating the

utility of different signatures for noninvasive individual identi-

fication. The suitability of an acoustic or other natural signa-

ture depends upon several factors, including that signature’s

individuality. High-individuality signatures increase the confi-

dence of animal identification, improving the accuracy of

behavioural and monitoring data and minimizing errors in

mark–recapture estimates of abundance and survival. Previous

studies proposed Beecher’s information statistic,Hs, as a useful

measure of individuality, which in turn could be utilized to

evaluate the suitability of acoustic or other traits for noninva-

sive individual identification. Calculating the statistic requires

some preliminary sampling of the focal trait, yet it is unknown

howmuch preliminary sampling could be considered sufficient:

no previous study has evaluated the statistic’s sensitivity to

sampling design. Using audio recordings collected from two

species of wild rodents, as well as simulated data, we found that

the greatest concern when estimating Hs is the number of

observations per session (C), which had a substantial effect on

estimates of Beecher’s information statistic (Hs) in both real-

world and simulated data.

The relationship between observations per session (C) and

Hs had two important characteristics. First, there were

diminishing returns from preliminary sampling; after approx-

imately 10–20 observations per session, additional sampling

effort contributed relatively little to Hs. A limit to the value

of additional sampling is important because it indicates that

preliminary field sampling can be restricted and still yield

useful estimates of Hs. The 10–20 observations per session

threshold may be different in different taxa, but the Richard-

son’s ground squirrels, Olympic marmots, SimHigh, and

SimLow data show this threshold to be reasonable across a

wide range of individuality levels. Many species are likely to

be comparable.

Secondly, for any level of observations per session (C), our

data indicate that it is possible to draw inferences about rela-

tive individuality. This is because for any given C, the relative

difference in individuality between two species or traits was

maintained (Fig. 1). As long as observations per session sam-

pling effort is held constant between species, populations,

traits, or studies, the relativeHs – and thus potential usefulness

for noninvasive individual identification – can be meaningfully

compared. For example, at any level of C, our data suggest

acoustic individual identification via alarm calls would bemore

useful and reliable in a species like Olympic marmots than in a

species like Richardson’s ground squirrels.

The number of animals sampled (A) and the number of

observation sessions sampled (B) also had significant, though

substantially smaller, effects onHs. To compareHs values with

greatest confidence, these sampling aspects should also be con-

trolled when comparing two candidate signatures or species.

However, our data suggest that small perturbations in these

sampling conditions would be of less concern than perturba-

tions inC.

Future work could test the effect of sampling design on Hs

calculation in other taxa and in other modalities. The general

relationship between calls per bout andHs in the rodent alarm

calls was upheld in the modality-free, taxon-neutral simulated

data, suggesting that the influence of observations per session

may be of general concern when estimatingHs.

NOTE ON SIGNATURE STABIL ITY

Signature stability is likely to vary across species and across

signal types, and this is a concern for any form of noninva-

sive individual identification and monitoring. An individual

signature is of little practical value if it changes on short time

scales. Signature stability can be assessed using traditional

methods of signal resampling, following by controlled discri-

minant functions analysis or other comparative statistics.

Importantly, the Hs statistic incorporates signature stability

into its estimation of individuality. Signature stability influ-

ences Hs because it influences the amount of within-individual

variation observed in signal traits (Beecher 1989). Candi-

date signals with high Hs values are highly individualistic

over the time scale from which they were sampled, and

thus could be useful in noninvasive individual identifica-

tion across similar time scales.

Fig. 1. Logarithmic curve fits of calls per bout (C) vs. information sta-

tistic (Hs) for simulated high-individuality data (SimHigh, dashed

line) and simulated low-individuality data (SimLow, dotted line).
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APPLICATION OF HS

Target species will differ in their suitability for noninvasive

individual identification, as will candidate traits within a

species. Suitability is influenced by practical concerns, such as

trait salience, ease of resampling, etc. Noninvasive individual

discrimination also requires individuality to exist in the candi-

date trait. The greater this individuality, the more suitable that

candidate trait is for noninvasively identifying individuals (e.g.

Lubow&Ransom 2009).

To calculate Hs, a number of known individual animals

must first have their candidate trait sampled (with at least 10–

20 observations per session). The resulting Hs then indicates

howmuch raw individuality is available for individual identifi-

cation purposes. IfHs is calculated on another species, or on a

different type of signature within a species (e.g. a territorial

display vs. an alarm call), the Hs values can be directly com-

pared as long as the same sampling parameters were used. A

higherHs indicates a more suitable trait or species (in terms of

individuality) for use in noninvasive individual identification.

Hs thus allows researchers to pre-screen the relative useful-

ness of different signature types for noninvasive individual

identification, and to assess which species are most amenable

to noninvasive individual identification. Hs values can also

be compared across modalities, allowing ecologists and

mangers to evaluate the relative usefulness of, for example,

acoustic calls vs. a particular visual trait.

Perhaps more intuitively, theHs metric may be used to com-

pare candidate traits by estimating the maximum number of

individuals discriminable by those traits (eqn 4). For example,

our data suggest that alarm calls would allow us to discrimi-

nate up to 34 adult female Olympic marmots and 26 adult

female Richardson’s ground squirrels. These numbers indicate

that alarm calls may bemore appropriate for individual identi-

fication in Olympic marmots than they would be in Richard-

son’s ground squirrels. These numbers could also be compared

to those calculated from alternative candidate traits (such as

coat patterns or another vocalization type) to determine which

trait has greater individuality.

HS AND POPULATION ESTIMATES

Assessing the individuality of a candidate natural signature

is important before embarking on any study that uses that

natural signature for individual identification, including stud-

ies of abundance, habitat use, or population response for

adaptive management. Any natural signature must be reliable

enough to meet the assumptions that it cannot be lost or

overlooked, will be recorded properly, and will be ascribed

to the proper unique individual (Williams, Nichols & Con-

roy 2001). For population estimates based on individual

identification, the signature’s individuality is critical. Low-

individuality signatures make resighting data ambiguous

and population estimates very uncertain (Gilbert,

McGregor & Tyler 1994; Jones & Smith 1997; Holschuh &

Otter 2005; Lubow & Ransom 2009). If animals are not

self-consistent in the signature trait, double counting

becomes a concern. An animal sighted twice may appear

to be two different animals. If signatures are repeated

among different individuals, undercounting becomes a

concern. Two different animals may be recorded as two

sightings of one animal. Both over- and under-estimations

of population size and population response can have nega-

tive management consequences (Caughley & Sinclair

1994). The use of highly individualistic signatures (those

with high Hs values) minimizes these problems by account-

ing both for self-consistency within individuals and for

signature repeats among individuals (Beecher 1989).

In conclusion, the use of natural signatures for noninvasive

individual identification is an important tool for gauging popu-

lation response to management actions, assessing abundance

and habitat use, and for ecological and behavioural study of

wild animals. The individuality of a natural signature is critical

for the accuracy of these endeavours. Low-individuality natu-

ral signatures lead to mistakes in estimates of abundance or

habitat use and hinder adaptive management efforts. Using an

information metric (Beecher 1982, 1989) to calculate the indi-

viduality of candidate signatures, before embarking on a study,

may save time and energy andminimize the risk of errors from

using low-individuality signature traits. Our study indicated

Beecher’s metric is fairly robust to a range of sampling designs

and hence is a good practical choice for pre-screening natural

signatures for their individuality.
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