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Abstract.—While sociality has been hypothesized to drive the evolution of communicative com-
plexity, the relationship remains to be formally tested. We derive a continuous measure of social
complexity from demographic data and use this variable to explain variation in alarm repertoire
size in ground-dwelling sciurid rodents (marmots, Marmota spp.; prairie dogs, Cynomys spp.; and
ground squirrels, Spermophilus spp.). About 40% of the variation in alarm call repertoire size
was explainéd by social complexity in the raw data set. To determine the degree to which this
relationship may have been influenced by historical relationships between species, we used five
different phylogenetic hypotheses to calculate phylogenetically independent contrasts. Less varia-
tion was significantly explained in contrast-based analyses, but a general positive relationship re-
mained. Social complexity explained more variation in alarm call repertoire size in marmots,
while sociality explained no variation in repertoire size in prairie dogs and no variation in phylo-
genetically based analyses of squirrels. In most cases, substantial variation remained unexplained
by social complexity. We acknowledge that factors other than social complexity, per se, may
contribute to the evolution of alarm call repertoire size in sciurid rodents, and we discuss alterna-
tive hypotheses. Our measure of social complexity could be used by other researchers to test ex-
plicit evolutionary hypotheses that involve social complexity.

While it is often implied that sociality drives the evolution of communicative
complexity (e.g., Marler 1977; Waser 1982; Marler and Mitani 1988; Philips
and Austad 1990; Hauser 1996), the hypothetical relationship is rarely explicitly
stated, and the relationship has never been formally tested. Marler (1977, p. 46)
predicted that ‘‘the richest elaboration of systems of social communication
should be expected in intraspecific relationships, especially where trends to-
wards increasing interindividual cooperation converge with the emergence of so-
cial groupings consisting of close kin.”” Waser (1982, p. 118) also linked social-
ity to communicative complexity when he noted ‘‘the value to a signaler of
broadcasting information to recipients, and thus the degree to which selection
favors specialized ‘information-transfer’ abilities, depend[s] on the social sys-
tem.”” Testing the relationship between social complexity and communicative
complexity requires explicit definitions of both variables in terms of complexity
and comparative tests. In this article, we focus on the evolution of alarm call
repertoire size in ground-dwelling sciurid rodents (marmots, Marmota spp.; prai-
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rie dogs, Cynomys spp.; and ground squirrels, Spermophilus spp.). We derive a
continuous and objective measure of social complexity from demographic data
and use this variable to explain variation in alarm call repertoire size.

Ground-dwelling squirrels are an ideal taxon to ask questions about the evolu-
tionary impacts of social variation on communicative complexity. There is a
large body of literature on social variety in marmots, prairie dogs, and ground
squirrels (e.g., Murie and Michener 1984; Barash 1989; Hoogland 1995; Bibi-
kow 1996). Social organizations range from those species that disperse immedi-
ately following weaning and live more or less solitary lives to those that exhibit
delayed dispersal, in which overlapping generations of individuals share a home
range and interact amicably. All ground-dwelling sciurids emit alarm calls, and
repertoire size varies. Moreover, alarm calls are relatively common vocalizations
and generally quite loud; estimates of repertoire size should be reasonably accu-
rate. Thus, there is sufficient variation in both social organization and alarm call
repertoire size for potential adaptive coevolution.

COMPLEXITY DEFINED

The term complexity is often used but rarely explicitly defined (McShea
1991). Others (e.g., Cole 1985) estimated behavioral complexity by counting the
number of discrete behaviors. Simply put, the logic is that more discrete behav-
iors can be used more ways (Bonner 1988). While this definition may be a rea-
sonable first approximation to estimating complexity, a richer definition of com-
plexity implies more than simply counting the numbers of discrete behaviors.
Complexity also implies some degree of variation or unpredictability in how ele-
ments (such as behaviors) are arranged (McShea 1991). Dawkins (1992, p. 265)
presents a nice analogy to illustrate complexity. To compare the complexity of
a lobster and an earthworm, write a book to describe each species. The longer
book describes the more complex organism. All explicit definitions of complex-
ity acknowledge that it must be viewed in a continuous fashion (e.g., Shannon
and Weaver 1949; Sanders and Ho 1981; Cole 1985; Bonner 1988; McShea
1991). Thus, we must define sociality in a continuous way that reflects com-
plexity.

Social Complexity

The evolution of sociality or social behavior is often studied by treating social
variation categorically (e.g., Winston and Michener 1977; Prum 1994; Crespi
1996), and social systems are often classified in ways unrelated to complexity
(e.g., Crook and Gartlan 1966; Wittenberger 1979; Armitage 1981; Croft 1989).
Previous classifications that specifically acknowledged variation in complexity
specified only a few somewhat subjective levels of complexity (e.g., Eisenberg
et al. 1972). Colleagues have noted that perhaps complexity has little explana-
tory utility when thinking about social evolution because what ultimately mat-
ters is the relative fitness of different social structures, not complexity. We be-
lieve this is logical advice. But different social structures may result from
differences in complexity, and/or complexity may be associated with different
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social structures. Thus, complexity and social structure may be inseparable. If
so, complexity is an objective measure of differences in social structure. Finally,
and correctly or incorrectly, the evolution of complexity is a central theme in
contemporary biology (Bonner 1988; McShea 1991, 1996; Szathmary and May-
nard Smith 1995). Thus, to study the relationship between social complexity and
communicative complexity, we must explicitly define sociality in terms of com-
plexity.

Group size is sometimes used as a measure of sociality (e.g., Eisenberg 1981;
Janson and Goldsmith 1995). Yet social group size is an inadequate metric of
social complexity because social behavior involves relationships between indi-
viduals, and the diversity of these relationships is not captured by simply using
group size. Social behavior has been classified by the nature of the relation-
ship (Alexander 1974), by the stability or persistence of the relationship (Foley
and Lee 1989), by a species mating or grouping system (Wittenberger 1979;
Wrangham 1986), by a series of ecological factors (Crook and Gartlan 1966),
and by a series of life-history, ecological, and/or social variables (Clutton-Brock
and Harvey 1977; Armitage 1981; Di Fiore and Rendall 1994). Because social
behavior is typically defined categorically, it is not immediately obvious how to
compare different social systems objectively with respect to variation in com-
plexity. A new metric of social variation is required to specifically quantify
complexity. This metric would ideally be broadly applicable to diverse taxa.

Previous classifications of primate, macropod, and ground-dwelling sciurid
sociality subjectively classified species into social grades (e.g., Eisenberg et al.
1972; Armitage 1981; Michener 1983; Croft 1989). For sciurids, classification
depended, in part, on the methods used and on available data. Michener (1983)
classified species according to kinship and spatial distributions of different age
and sex animals; for many species, detailed information on kinship and social
structure was unavailable. The five social grades proposed in other works (Arm-
itage 1981; Michener 1983) were not always congruent, and there was no obvi-
ous way to describe the continuous nature of sociality (i.e., variation within a
social grade was ignored).

Classical information theory (Shannon and Weaver 1949) provides the tools
to quantify complexity continuously and objectively. The number of binary dig-
its (bits) required to describe a social system objectively defines social variation
along a metric of complexity (also see Sanders and Ho 1981). In the communi-
cation literature, the Shannon-Wiener formula,

HX) = =X p(i)log, p(i), )]

defines the amount of potential information in a message, H(X), given the rela-
tive frequency, p(i), of a number of different signals, X;. The variable H(X) is
the number of bits of information required to describe a communicative system
with i different signals each occurring with a probability p. The simplest case
is where there is a single signal given with 100% probability: p(i) = 1; log,
p(i) = 0. In this case, H(X) = 0, for no information is required to describe
something that happened all the time. Analogously, if individuals always lived
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alone, the species’ social system would be very simple and would require few
bits to be described fully.

To use information theory to describe social variation, we assumed that spe-
cies with more demographic roles were more complex than those with fewer
roles. A role is a ‘‘socially expected behavior pattern usually determined by an
individual’s status in a particular society’’ (Webster’s New Collegiate Diction-
ary, 19th ed., s.v. “‘role’’). For instance, two roles in a social group may be
breeding and nonbreeding. Many types of roles change over time: nonbreeders
may mature into breeders; breeders may not breed every year; subordinates may
become dominants; a territory holder may become a floater; and so forth. Roles
may also vary in their degree of specification: breeders and nonbreeders may be
classified according to sex. Thus, a group may have both female breeders and -
female nonbreeders. Social structure can be described based on the roles present
in a social group. Thus, some groups may have a single breeding male, no non-
breeding males, and a mix of breeding and nonbreeding females. Our use of the
term role is very similar to Hinde’s (1975) discussion of relationships. Sociality
can be described by noting the nature and variety of relationships or, using our
terminology, roles. .

While it would be ideal to acknowledge the diversity and flexibility of roles
present in social groups, such data are typically unavailable for many species,
and more specific roles must emerge from demographic roles. We defined roles
based on age and sex as reported in the literature, and we used social groups as
the unit of analysis. For instance, some marmots had social groups containing
adults, 2-yr-old and yearling nonbreeding individuals, and juveniles born that
year. Some Spermophilus social groups had a single female with her young of
the year. In all cases in which adult males and females lived together, we de-
fined a role for adult males and a role for adult females. Our classification may
oversimplify behavioral complexity. We do not intend our descriptions of com-
plexity to be final; rather, we view them as the best possible given available in-
formation. The methodology permits us to quantify social complexity objec-
tively and is amenable to the addition of new data.

We summarized the literature on the demographic structure of social groups
and calculated an H(X) for each role (H(X)adult males, H(X)adult females,
etc.). Specifically, for each role, we counted the number of social group years (a
social group studied for a year) that contained a particular number of individuals
(e.g.,0,1,2,3,...,nadult males, etc.) and used these counts to calculate each
H(X). The sum of all the H(X)’s for a given species, H(X),, was the total num-
ber of bits required to describe the social structure of that species. However,
H(X), alone does not acknowledge kin structure. Envision two social systems
with exactly the same H(X), but differing in kinship. Because kinship adds new
dimensions to social relationships, we would like those social groups with kin-
ship to be more complex than those without kinship. One possible way to do
this that is amenable to comparative study would be to incorporate the time to
natal dispersal. There is variation in the time to natal dispersal among ground-
dwelling sciurids that generates kin structure in social groups. To incorporate the
added complexity of kin structure created by delayed dispersal, we multiplied
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each H(X), by a number reflecting the time to natal dispersal, T,4. Species that
dispersed before their first hibernation or during their first active season were
multiplied by 1, species that dispersed before their second hibernation or during
their second active season were multiplied by 2, and species that dispersed after
their second hibernation or active season were multiplied by 3. In doing so, we
are aware that sciurids with more demographic roles also have delayed dispersal.
Other taxa may increase social complexity solely by immigration and not by de-
layed dispersal. While we intend this metric to be generalizable to other taxa,
we are aware that we further increase the social complexity for complex species
by multiplying H(X) by T,4. For our 22 species, this multiplication has only
small effects on the relative positions in the social ranking; H(X), and SC, are
highly correlated (r, = 0.92, P < .001). Only Spermophilus columbianus, gener-
ally considered to be moderately social (Armitage 1981; Michener 1983), mark-
edly increased its social ranking as a consequence of incorporating 7,4 into the
calculation of SCy. Thus, this multiplication acknowledges, and emphasizes, the
potential importance of kin structure. We log-transformed all values for analysis.
Our measure of social complexity calculated from demographic data, SC,, was

SCqy = log[(H(X)) Tl 2)

An information theory approach emphasizes intraspecific variation when de-
fining social variability. This makes sense intuitively: species for which there is
variation in the number of possible age/sex classes living together must be more
socially flexible than those in which the number of age/sex classes living to-
gether remains fixed. For many social species, social flexibility is the norm (Lott
1991). Moreover, variability is the essence of what is typically emphasized in
discussions of complexity (McShea 1981). Theoretically, emphasizing variation
can lead to the strange result in which a demographic role (e.g., adult females)
in which half the animals lived alone and the other half lived with one other
animal would have the same H(X) as a species in which half the individuals
lived with five animals and the other half lived with 10 animals. This appeared
not to be a problem in our sciurid data set.

At some point in the future, we may be able to define roles according to dom-
inance status or according to types of affiliative behaviors or relationships be-
tween animals (e.g., Lee 1994). Presently, comparative data are lacking to do so,
-and we resorted simply to defining age/sex roles. This categorization provides
an estimate of the types of social interactions possible; social interactions must
emerge from animal grouping patterns (e.g., an asocial species does not allo-
groom much). Because demographic data were often lacking on sex ratios of
subadults, only adults had two roles; juveniles, yearlings (when present), and 2-
yr-olds (when present) had a single role each.

Communicative Complexity

Information theory can explicitly be used to describe and quantify communi-
cative complexity. Unfortunately, to use information theory properly, we must
study both the production and perception of signals; not all forms of acoustic
variation may be perceptually salient (e.g., Green and Marler 1979; Hauser
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1996). Information on both the production and perception of signals is practi-
cally unavailable for the vast majority of species and only for a few sciurids.
Thus, we use repertoire size, a variable more amenable to comparative study, as
a first approximation of communicative complexity. We focused on alarm call
repertoire size.

When alarmed by predators, many species produce specific vocalizations
(Klump and Shalter 1984). We believe that alarm call repertoire size is an ideal
system to study the relationship between social and communicative complexity
for the following reasons. First, alarm calls are social calls. Alarm calling may
increase direct or indirect fitness components (e.g., Dunford 1977b; Sherman
1977; Schwagmeyer 1980; Shields 1980; Blumstein et al. 1997), and thus social
complexity may drive the evolution of alarm call complexity.

Second, ground-dwelling sciurid alarm calls tend to be loud and obvious;
thus, counts of alarm repertoire size should not be biased toward the better-
studied species. In contrast, those species studied in captivity and/or those
species well studied in the field are routinely reported to produce more nonalarm
vocalizations than less well studied species (e.g., Waring 1970). Nonalarm vo-
calizations tend to be quieter and are often less obvious to observers (D. T.
Blumstein, personal observations). This systematic bias that prevents a meaning-
ful comparison of ground-dwelling sciurid total repertoire size is not present
when comparing alarm repertoire size.

Third, each alarm call tends to be a relatively short duration vocalization that
primarily functions on an immediate timescale to potentially alert conspecifics
(e.g., Sherman 1977; Schwagmeyer 1980; but see Schleidt 1973; Owings and
Hennessy 1984; Loughry and McDonough 1988; D. T. Blumstein, unpublished
data, for examples of calls functioning on a longer timescale). In contrast, many
songbirds combine unique acoustic elements into more elaborate songs that
function on a longer timescale and for different functions. For instance, bird
songs may identify territories, signal readiness to mate, and so forth (Catchpole
and Slater 1995). When acoustic elements are combined to function on a longer
timescale, it is much more difficult to estimate repertoire size (Kroodsma 1982).

Fourth, while social signals used in other situations should logically co-vary
with social complexity (e.g., aggressive and/or submissive signals), many of
these signals are multimodal (e.g., an aggressive dog may growl and erect its
hair), and it is difficult simply to describe multimodal signal (their systematic
study is in its relative infancy; see, e.g., Hughes 1996). Moreover, while olfac-
tory signals may be an important component of multimodal signals, estimating
the size of an olfactory repertoire is difficult. Because alarm calls are loud and
obvious acoustic signals, estimates of repertoire size should be less biased.

Finally, whereas environmental experience influences song repertoire size in
several bird families, repertoire size in mammals seems much less plastic (e.g.,
Snowdon 1982; Snowdon and Elowson 1992; Hauser 1996), and there is no evi-
dence that any species learns its alarm calls. Together, these factors make mam-
malian alarm calls make an ideal system to study the relationship between social
and communicative complexity.

Some species vary calls according to the degree of risk the caller experi-
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ences—perhaps according to the response urgency, or the imminence of preda-
tion that the caller faces (Robinson 1981; Owings and Hennessy 1984;
Blumstein 19954, Blumstein and Armitage 1997). In addition, some species
vary call structure according to the type of predator detected (Seyfarth et al.
1980; Davis 1984; Cheney and Seyfarth 1990; Marler et al. 1992; Macedonia
and Evans 1993). Identifying predator-specific calls is important, for it was gen-
erally assumed that only humans could communicate about events and stimuli
external to themselves; nonhumans supposedly only communicated about their
internal states (reviewed in Marler 1985; Hauser 1996). Regardless of whether
calls are predator specific or not, both types of variable alarm calls are referred
to as situationally specific in that call structure in some way varies according to
situation.

Repertoire size should limit the degree to which risk or predator type can be
specified. Thus, repertoire size should be associated with the potential benefits
an individual hearing a given alarm call can gain by hearing that call. For in-
stance, if a species has an ‘‘eagle’” call and a ‘‘fox’’ call, an individual hearing
an eagle call “‘knows’’ that there is a predator in the air and thus may take ap-
propriate action. In contrast, for species that communicate the degree of risk a
caller experiences, a ‘‘high-risk’’ call initially conveys information only about
the caller’s perception of risk. Thus, a perceiver would presumably require addi-
tional contextual information (Leger 1993)—such as the caller’s location, the
caller’s age, the caller’s identity, or the caller’s concomitant behavior—to inter-
pret properly the degree of risk the caller experienced and thus the degree of risk
the perceiver may experience. It is likely that more complex kin-structured so-
cial systems will select for more complex alarm communication. Specifically,
we predict that social complexity will select for larger repertoire size because
larger repertoires permit situational variation to be more precisely specified.

METHODS

The Data Set

We reviewed the literature for studies that reported demographic information
and for studies that discussed alarm communication. A number of studies did
not report litter size distribution. If a mean and standard deviation were reported,
we assumed litter size was normally distributed to estimate litter size distribu-
tion. We either chose the single best demographic data set (e.g., Hoogland 1995)
or combined several studies. When different studies contributed demographic
data, we weighted the average by sample size. We counted the number of dis-
crete call types to calculate alarm call repertoire size. Our counts may overesti-
mate call repertoire size for species in which call types continuously graded into
each other, if and when previous investigators reported continuously varying
calls as discrete call types. Our counts may underestimate call repertoire size for
species that vary the acoustic microstructure of their calls with predator type
(e.g., C. Slobodchikoff, personal communication; see the double-daggered note



TABLE 1

FINAL COMPARATIVE DATA SET AND SOURCES CONSULTED

Species T H(X), SCy N AC References Consulted*
Marmota flaviventris 2 5.70 1.06 2% 1-5
Marmota caligata 3 7.42 1.35 4 6-9, 17
Marmota olympus 3 9.62 1.46 4 10, 17
Marmota camtschatica 3 4.18 1.10 1 11-13
Marmota monax 1 1.88 27 1 14-17, 78, 79
Marmota caudata 3 5.59 1.22 1 17-20
Marmota marmota 3 8.57 1.41 2 21-26
Cynomus ludovicianus 2 6.60 1.12 1 27-29
Cynomus parvidens 2 8.52 1.23 1 30, 31
Cynomus gunnisoni 2 5.32 1.03 1% 29, 32-34
Cynomus leucurus 1 6.84 .84 1 29, 35
Spermophilus tereticaudus 1 3.00 48 1 36-40
Spermophilus tridecemlineatus 1 3.16 .50 1 41-48
Spermophilus lateralis 1 2.39 38 2 49-51
Spermophilus beecheyi 1 1.83 .26 28 52-55
Spermophilus variegatus 1 2.67 43 2 56-60
Spermophilus armatus 1 2.76 44 2 61-63
Spermophilus beldingi 1 2.52 .40 2 64-66
Spermophilus richardsonii 1 245 . .39 3 67, 68
Spermophilus elegans 1 2.70 43 2 67-70
Spermophilus columbianus 2 2.23 -.65 3 67, 71-74
Spermophilus townsendii 1 2.55 41 2 75-71

NoTE.—Variables: T,, = the time to natal dispersal where 1 = disperses during first active season
or before first hibernation, 2 = disperses during the second active season or before second hibernation,
and 3 = disperses after second active season/hibernation; H(X), = sum of H(X) for each demographic
““role’” present; SCy = our measure of social complexity calculated from demographic data; and N AC
= the number of alarm calls.

* 1, K. B. Armitage, unpublished data; 2, Armitage 1991; 3, Frase and Hoffmann 1980; 4, Blumstein
and Armitage 1997; 5, Waring 1966; 6, Barash 1974; 7, Barash 1980; 8, Holmes 1979; 9, Holmes
1984; Barash 1973; 11, Kapitonov 1963 cited in Rausch and Rausch 1971; 12, Mosolov and Tokarsky
1994; 13, Ognev [1947] (1963); 14, de Vos and Gillespie 1960; 15, Ferron an Ouellet 1989; 16, Meier
1985; 17, D. T. Blumstein, unpublished data; 18, Blumstein and Arnold, in press; 19, Blumstein
1995a; 20, Blumstein 1995b; 21, Amold 1993a; 22, Arnold 1993b; 23, Barash 1976; 24, Blumstein
and Arnold 1995; 25, Perrin et al. 1993b; 26, Perrin et al. 1993a; 27, Hoogland 1995; 28, King 1955;
29, Waring 1970; 30, Pizzimenti and Collier 1975; 31, Wright-Smith 1978; 32, Fitzgerald and Lech-
leitner 1974; 33, Rayor 1985; 34, Rayor 1988; 35, L. Cooke, personal communication to K. B. Armi-
tage; 36, Dunford 1977b; 37, Dunford 1977¢; 38, Dunford 1977a; 39, Ernest and Mares 1987; 40,
Reynolds and Turkowski 1972; 41, Matocha 1977, 42, McCarley 1966; 43, Rongstad 1965; 44,
Schwagmeyer 1980; 45, Schwagmeyer and Brown 1981; 46, Schwagmeyer and Brown 1983; 47,
Streubel and Fitzgerald 1978; 48, Wistrand 1974; 49, Bartels and Thompson 1993; 50, Hatt 1927; 51,
Phillips 1981; 52, Evans and Holdenreid 1943; 53, Fitch 1948; 54, Leger et al. 1980; 55, Owings et
al. 1977; 56, Krenz 1977; 57, Oaks et al. 1987; 58, Ortega 1990; 59, Ortega 1991; 60, Shriner and
Stacey 1991; 61, Balph and Balph 1966; 62, Balph and Stokes 1963; 63, Slade and Balph 1974; 64,
Morton and Gallup 1975; 65, Robinson 1981; 66, Turner 1973; 67, Koeppl et al. 1978; 68, Michener
1979; 69, Pfeiffer 1982; 70, Zegers 1984; 71, Betts 1976; 72, Festa-Bianchet and King 1991; 73, Har-
ris et al. 1983; 74, Zammuto and Millar 1985; 75, Smith and Johnson 1985; 76, Rickart 1986; 77,
Rickart 1987; 78, Hamilton 1934; 79, Lloyd 1972.

T Yellow-bellied marmots produce three vocalizations in potentially alarming situations but only two
of them (whistles and trills) are loud alarm calls (Blumstein and Armitage 1997). Moreover, the quiet
call (chucks), when played back, does not elicit an alarm response in conspecifics. For these analyses,
we scored yellow-bellied marmots as having two-alarm vocalizations.

+ The microstructure (specifically, the shape of certain harmonics) of Gunnison prairie dog alarm
barks co-varies with predator species (C. Slobodchikoff, personal communication) and with the identity
of some individual predators (Slobodchikoff et al. 1991). It is interesting that variation appears contin-
uous: for this analysis, we scored Gunnison prairie dogs as having a single-alarm vocalization (barks).

§ Owings and Leger (1980) found microstructural predator and social specificity in California
ground squirrels’ chatter vocalization, and Leger et al. (1980) found microstructural variation in so-
cially elicited single-note vocalizations. For this analysis, we scored California ground squirrels as hav-
ing two alarm vocalizations: chatters and single-note vocalizations.
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in table 1). Because not all species were studied with equivalent detail, we fo-
cused on the number of discrete alarm call types.

Regression Analyses

We regressed our measure of social complexity against alarm call repertoire
size where we set the y-intercept to 1.0 because all species had at least one
alarm call and we expected repertoire size to increase with complexity. To con-
trol for possible phylogenetic nonindependence on alarm repertoire size and on
sociality, we examined the relationship using standardized independent contrasts
calculated for each variable. We used Purvis and Rambaut’s (1995) statistical
package, CAIC, to calculate independent contrasts for social complexity and
alarm call repertoire size. As specified in the CAIC manual, we regressed these
standardized contrasts through the origin. In all cases, we used one-tailed tests
because we have a specific directional hypothesis.

There is no published phylogenetic hypothesis that includes all species of in-
terest, and different species groups have been studied at various degrees of de-
tail. We eagerly anticipate the publication of inclusive and well-supported phy-
logenetic hypotheses. In their absence, we generally inferred phylogeny from
taxonomy (Nowak and Paradiso 1983) but added additional information where
known (Howell 1915; Hoffmann and Nadler 1968 for the marmots; Hafner 1984
for sciurid subgenera), and we refer to this tree as tree 1 (fig. 1). Black (1972)
assumed that the genus Marmota evolved in the New World from a woodchuck-
like ancestor. We switched the location of Marmota marmota and Marmota mo-
nax to create tree 2 (fig. 1). Thomas and Martin (1993) questioned the ancestral
location of the genus Marmota. They suggested the genus Marmota evolved re-
cently from Spermophilus ancestors. We calculated independent contrasts from
a tree, tree 3 (fig. 1), in which Cynomys, Marmota, and the remaining Spermo-
philus subgroups branch simultaneously, and a tree, tree 4 (fig. 1), that reflects
the recent origin of marmots. We generated tree 5 (fig. !) to recognize evidence
suggesting Cynomys is the crown group of the subgenus Spermophilus in the
currently recognized genus Spermophilus (Dobson 1985 and references therein;
Goodwin 1990).

To calculate standardized independent contrasts, we set all branch lengths
equal and selected the crunch option in CAIC. Setting branch lengths equal as-
sumes an underlying evolutionary model of punctuational change (e.g., Harvey
and Pagel 1991) and is less inaccurate than estimating branch lengths with miss-
ing species (Purvis and Rambaut 1995). No independent measures of branch
length are available for our partial phylogenies, so we did not calculate contrasts
assuming Brownian motion trait evolution.

There was variation in the repertoire size of marmots and ground squirrels but
not prairie dogs (Results). For marmots alone and for ground squirrels alone, we
regressed social complexity against alarm call repertoire size and reran regres-
sions on independent contrasts calculated from the relevant trees (two trees for
marmots and four trees for squirrels). Finally, because the squirrel distinction
may be artificial (e.g., Dobson 1985), we reran regressions with a data set con-
taining Cynomys and Spermophilus.
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FiG. 1.—Phylogenetic hypotheses used to calculate contrasts. These are partial working
phylogenies of sciurid rodents; recognized genera and species not included in these analyses
are not illustrated. Tree I, A taxonomically derived tree with phylogenetic information added
where known. Tree 2, Marmota monax shifted to reflect its possible ancestral location in
Marmota. Letters marked at higher nodes on trees 1 and 2 are used to illustrate the structure
of the following two trees. Tree 3, An unresolved origin of Marmota. Tree 4, A recent origin
of Marmota and other sciurids from a subgroup of species currently classified as Spermophi-
lus. Tree 5, Cynomys as the crown group of the subgenus Spermophilus.
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In addition to calculating independent contrasts, we also analyzed the data us-
ing phylogenetic autocorrelation (Cheverud et al. 1985; Gittleman and Kot 1990;
Gittleman and Luh 1992). Phylogenetic autocorrelation permitted us to estimate
and statistically remove the maximum amount of variation in each variable (so-
cial complexity, repertoire size) that could be explained by phylogenetic similar-
ity. Phylogenetic autocorrelation assumes explicitly statistical models of trait
change that vary according to an autoregressive model (Purvis et al. 1994; Mar-
tins 1995) and, under a Brownian motion model of evolution, may produce er-
ratic results with sample sizes <40 (Martins 1996). We used a single phyloge-
netic hypothesis, the taxonomy reported in Nowak and Paradiso (1983), to
estimate the phylogenetic distance matrix. The phylogenetic distance matrix de-
fines the sets of species with which each individual species’ trait value will be
compared to search for autocorrelation. The classical taxonomic classification
recognizes subgenera in both Cynomys and Spermophilus and recognizes two
subtribes: one containing Marmota and the other containing both Cynomys and
Spermophilus. We used the program P.A. (Luh et al. 1995) to fit phylogenetic
autocorrelations. Correlograms (plots of Moran’s /—the autocorrelation statis-
tic—yvs. phylogenetic distance) suggested significant phylogenetic autocorrela-
tion at lower taxonomic levels that disappeared after we calculated phylogeny-
free residuals. We regressed the phylogeny-free residuals against each other to
estimate the variation in alarm repertoire size independently explained by social
complexity.

RESULTS

Our final comparative data set contained data for 22 species: seven of 14 mar-
mots (three Old World, four New World), four of five prairie dogs (a New
World genus), and 11 of 38 ground squirrels (all were New World species; table
1). Our metric of social complexity was highly correlated with two previous in-
dexes of sciurid sociality (r = 0.84, N = 17 [Armitage 1981]; »r = 0.89, N = 17
[Michener 1983]). Nevertheless, there are some discrepancies with less objective
assessments of social complexity. For instance, J. Hoogland (personal communi-
cation) noted that our demography-based metric classified black-tailed prairie
dogs (Cynomys ludovicianus) as less complex than Utah prairie dogs (Cynomys
parvidens). His detailed behavioral observations suggest that black-tailed prairie
dogs engaged in more types of social behavior than Utahs. It is interesting that
many of black-tailed prairie dogs’ social interactions during the time before
pups emerge are related to perpetrating or preventing infanticide. It would be
interesting to study the relationship between social complexity and the amount
and/or degree of amicable behaviors. Despite this exception (black-tailed vs.
Utah prairie dogs), our metric generally is consistent with our expectations
based on previous studies.

Social complexity varied between genera (Kruskal-Wallis P = .004). Post hoc
multiple comparisons (P < .05) suggested marmots and prairie dogs were more
complex than ground squirrels. Alarm call repertoire size tended to vary be-
tween genera (Kruskal-Wallis P = .055); prairie dogs had significantly fewer
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FiG. 2.—The relationship between social complexity and alarm call repertoire size. Be-
cause all species had at least one alarm call, we set the y-intercept at 1. Overlapping values
are vertically offset; the P value is one-tailed.

TABLE 2

VARIATION IN ALARM CALL REPERTOIRE SIZE EXPLAINED BY SOCIAL COMPLEXITY (ADJUSTED R?)
ASSUMING FIVE DIFFERENT EVOLUTIONARY SCENARIOS

Tree 1 Tree 2 Tree 3 Tree 4 Tree 5
All data 6.5% 7.9% 11.9% 10.6* 30.67
No woodchucks 3.8 NS 5.1% 5.2 NS 10.4% 20.5%%
Marmots only 17.3* 18.5% e ce cee
Marmots without woodchucks 77.7% 73.61 cee cee
Squirrels only 0O NS 0 NS 0 NS 0 NS cee
Cynomys and Spermophilus e o e cee 0 NS

NOTE.—NS = P > .1 (one-tailed).
*#.1 > P > .05 (one-tailed).

*# 05 > P > .01 (one-tailed).
.01 > P > .001 (one-tailed).

vocalizations than did either marmots or ground squirrels. About 40% of the
variation in alarm repertoire size was significantly explained (adjusted R? =
0.40, P = .0004) by SC,, our measure of social complexity (fig. 2). After con-
trolling for possible phylogenetic effects by calculating independent contrasts,
we found that social complexity explained less variation in alarm call repertoire
size (table 2). Under some evolutionary scenarios, no significant variation in
repertoire size was significantly explained by social complexity. Regression on
phylogeny-free residuals calculated from the phylogenetic autocorrelation analy-
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sis generated positive results; once again, less variation was explained after re-
moving phylogenetic effects (adjusted R*> = 11.6, P = .031).

Woodchucks (Marmota monax) were an outlier that had a large impact on
some results of the phylogenetic analyses. Woodchucks are a marmot with a
simple social system and apparently a single, two-part alarm call (Hamilton
1934; Lloyd 1972; Meier 1985). We have been trying to study woodchuck alarm
communication in detail to no avail: in over 100 h of fieldwork on woodchuck
alarm communication, not a single alarm call was heard (D. T. Blumstein, un-
published data). Given some uncertainty about the number of alarm vocaliza-
tions woodchucks produce (one or two), we removed woodchucks from the
analysis and recalculated all contrasts. Removing woodchucks reduced the
amount of explained variation (table 2).

When marmots and squirrels (prairie dogs do not have variable numbers of
alarm vocalizations) were analyzed separately, results were similar. About 54%
of the variation in marmot repertoire size was explained by our measure of so-
cial complexity (P = .01), and significant variation was explained after calculat-
ing independent contrasts to control for phylogenetic effects under some evolu-
tionary scenarios (table 2). When we examined the effect of social complexity
on alarm repertoire size in marmots alone, removing woodchucks greatly in-
creased explained variation. About 69% of the variation in ground squirrel rep-
ertoire size was explained by social complexity (P = .0003), while no signifi-
cant variation was explained after controlling for potential phylogenetic
similarity using independent contrasts given any of the evolutionary scenarios.
Finally, when we combined Cynomys and Spermophilus, about 18% of the vari-
ation in repertoire size was explained in the raw data set (P = .0293), while no
significant variation was explained in the contrast-based analysis (table 2). The
phylogenetic autocorrelation estimated that 54% of the variation in social com-
plexity was attributable to phylogenetic (specifically taxonomic) similarity,
while only 4% of the variation in-alarm call repertoire size in analyses that in-
cluded woodchucks and 6% of the variation in analyses that excluded wood-
chucks were attributed to phylogenetic similarity. Thus, substantial variation in
alarm call repertoire size remained unexplained and was potentially available for
adaptive coevolution with social complexity.

DISCUSSION

Complex social behavior explained some, but not most, of the variation in
alarm repertoire size in sciurid rodents. Because both vocalizations (e.g., Nikol-
skii 1976; Macedonia and Stanger 1994; but see Nottebohm 1975; Irwin 1990)
and social behavior (e.g., Edwards and Naeem 1993; Di Fiore and Rendall 1994;
Prum 1994; Chan 1996; but see Gittleman et al. 1996) may have substantial
phylogenetic information, we adjusted for and/or removed the effects of phylo-
genetic similarity. Given some uncertainty in historical relationships, we exam-
ined several alternative phylogenetic hypotheses. The specific hypothesis we
used influenced the amount of explained variation, but the general relationship
remained positive. When we examined subsets of the full data set, we found that
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after accounting for phylogeny, social complexity may (in Marmota) or may not
(in Spermophilus and Cynomys) be an important determinant of communicative
complexity. Closely related squirrels tended to have similar numbers of alarm
calls, and there is relatively limited variation in both SC, and the number of
alarm calls to explain. In contrast, marmots had the most variation in both SCj
and the number of alarm calls to be potentially explained.

If social behavior is not the primary determinant of alarm repertoire size in
sciurids, what else might be responsible for the evolution of complex communi-
cation? At least four factors other than sociality may generally influence the
evolution of complex communication and specifically influence the evolution of
alarm call complexity. We do not suggest that these (and potentially other) fac-
tors are equally important in the evolution of complex communication. How-
ever, they might explain additional unexplained variation in communicative
complexity.

Variation in the facial or laryngeal morphology may constrain or permit the
production of variable alarm calls or other vocalizations (Fitch and Hauser 1995;
Hauser 1996). While this may account for variation among genera, within a ge-
nus animals appear superficially similar. Detailed morphological studies ulti-
mately need to determine whether there are differences within or between gen-
era. As a first approximation, one reason to study communicative complexity in
sciurids is the ability to discount the importance of within-genus morphological
variation.

Physical and/or biological habitat acoustics may directly influence communi-
cative complexity and may also interact with social behavior. Sounds must be
transmitted through space during which time they may degrade in several ways
and/or attenuate (Morton 1975; Wiley and Richards 1978; Brown and Waser
1988; Forrest 1994). In particularly destructive environments, effective commu-
nication may have to be simple. If habitat structure precludes differentiation of
two sounds from each other at a distance (e.g., marmot example in Blumstein
and Daniel, in press), the physical habitat has effectively selected for relatively
simple communication. The biological habitat may be defined as the suite of
other vocally communicating animals. With others present, available ‘‘band-
width’” may be limited and acoustic structure may be constrained (Ryan 1988).
Competition with other conspecifics may select for greater acoustical structural
variation (Alexander 1960). Both forms of habitat acoustics may interact with
social behavior. Certain physical environments may have certain types or distri-
butions of resources and may favor certain social systems (Wittenberger 1981).
If certain types of habitats also have specific acoustics, then effective communi-
cation may require individuals to clump. Animals living in habitats with con-
siderable acoustic competition may also compete with heterospecifics for
bandwidth in which to communicate (Ryan 1988). Alternatively, mutualistic
alarm-calling relationships with other species (e.g., Waring 1966; Rasa 1983;
Seyfarth and Cheney 1990) may influence the costs and benefits of associating
with other conspecifics and may constrain acoustic variation.

Finally, specific needs may influence communicative complexity and/or inter-
act with social behavior. For instance, one compelling hypothesis for the evolu-
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tion of predator-specific alarm calls is that species with fundamentally different
predator-specific escape strategies will benefit most from predator-specific calls
(Macedonia and Evans 1993). For example, vervet monkeys (Cercopithicus ae-
thiops) produce acoustically different calls in response to different types of pred-
ators; they chutter to snakes, bark to leopards, and cough to eagles (Cheney and
Seyfarth 1990). Monkeys hearing chutters immediately stand bipedally and look
for snakes, those hearing barks climb trees and retreat to the distal part of limbs
where they will be safe from leopards, and those hearing coughs retreat to the
center of trees where they are safe from eagles. Macedonia and Evans (1993)
predicted that species with predator-specific escape strategies, like vervet mon-
keys, will have predator-specific alarm calls. Because there is variation in sci-
urid predators, some species may have predator-specific escape strategies, and
the incompatibility of these strategies may be associated with larger repertoire
sizes. However, because most ground-dwelling sciurids flee to a burrow when
alarmed, their behavior may reduce selection for predator-specific escape strate-
gies. The need to avoid predators may influence how conspecifics are distributed
in space, which in turn may influence social behavior.

More data and better phylogenetic resolution will likely permit a more exact
estimate of the variation in alarm call repertoire size explained by social com-
plexity. Yet because alarm repertoires may be simultaneously influenced by sev-
eral other causal factors, future analyses should simultaneously study the relative
importance of these other factors. Thus, we suggest the question be rephrased:
How important is social complexity, relative to other causal factors, for the evo-
lution of communicative complexity?

Current evidence suggests the genus Marmota may offer a good opportunity
for future research. The relationship between alarm call repertoire size and so-
cial complexity is significant when controlling for phylogenetic effects. Marmots
vary in both alarm call repertoire size and in SCy more than either ground squir-
rels or prairie dogs. Thus, we suggest that studying additional species of mar-
mots is an efficient way to address the question of the relative importance of
social complexity and other causal factors in the evolution of complex commu-
nication. Alternatively, another research agenda might focus on the currently
recognized genus Spermophilus because there is a relatively high alarm call
complexity in spite of limited social complexity. Thus, it should be possible to

-identify factors other than sociality that influence communicative complexity.

In the future, we hope investigators will publish more specific data on age/
sex distributions of other taxa to permit the study of complexity in other taxa.
However, many socioecological questions are studied by comparing populations
of a single species living in different ecological settings. While we used our
metric of complexity to study variation among species, future investigators
could use it to study intraspecific variation in complexity.
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