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Abstract
Island populations may provide unique insights into the evolution and persistence of 
antipredator behavior. If antipredator behavior is costly and islands have reduced pre-
dation risk, then we expect the reduction or loss of antipredator behavior on islands. 
However, if even a single predator remains, the multipredator hypothesis predicts that 
antipredator behaviors will be conserved. We compared the flight initiation distances 
(FID) of California quail (Callipepla californica) on Santa Catalina Island (a location with 
reduced predation pressure) with quail on the mainland. We found no differences in 
FID between mainland and island quail. However, despite employing consistent test-
ing methods, the starting distance from which quail were approached was significantly 
reduced for quail studied on the island when compared with quail studied on the main-
land. Our results are consistent with the multipredator hypothesis because, while the 
island population had substantially fewer predators, some predators remained and 
some antipredator behavior persisted.
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1  | INTRODUCTION

Many prey species lose costly antipredator behaviors when isolated 
on islands devoid of predators (Darwin, 1839). Such “island tameness” 
allows insular prey species to direct time and energy toward other im-
portant activities. New Zealand tammar wallabies (Macropus eugenii), 
for instance, showed a complete loss of antipredator behavior when 
isolated from all predators (Blumstein, Daniel, & Springett, 2004). 
Being isolated on an island also may be associated with a reduction 
or loss of antipredator behavior even if some predators are present. 
For instance, insular populations of lizards (Cooper, Pyron, & Garland, 
2014) and macropodid marsupials (Blumstein & Daniel, 2005) had at-
tenuated antipredator behavior. However, the loss of some predators 
does not always result in a complete reduction in antipredator behav-
iors and many species from diverse taxa maintain antipredator behav-
ior when isolated from some, but not all predators (lizards on Aegean 

islands, Pafilis, Foufopoulos, Poulakakis, Lymberakis, & Valakos, 2009; 
yellow-bellied marmots (Marmota flaviventer; Blumstein, Ferando, & 
Stankowich, 2009), and Hokkaido deer (Cervus nippon yesoensis) liv-
ing without wolves (Canis lupus; Osada, Miyazono, & Kashiwayanagi, 
2015)).

Both the risk allocation (Lima & Bednekoff, 1999) and threat sensi-
tivity (Helfman, 1989) hypotheses may explain “island tameness”, not-
ing that reduced predation risk leads to reduced antipredator vigilance 
and other forms of antipredator behavior. The risk allocation hypoth-
esis states that temporal variation in predation risk drives antipreda-
tor behavior (Lima & Bednekoff, 1999). As overall predatory attacks 
increase, animals should allocate more vigilance in high-risk situations, 
but should allocate less vigilance in low-risk situations to make up for 
lost feeding (Lima & Bednekoff, 1999). However, the need to feed 
means that animals will become less vigilant in high-risk situations 
that span long periods of time (Lima & Bednekoff, 1999). Similarly, the 
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threat sensitivity hypothesis states that prey will alter their antipreda-
tor response to reflect predatory threat levels (Helfman, 1989). Prey is 
expected to evade predators to a degree that reflects the magnitude 
of threat. For example, threespot damselfish (Stegastes planifrons) re-
sponded in graded fashion to varying threat levels, with antipredator 
response increasing with threat (Helfman, 1989). Distinguished pri-
marily by the influence of the threat frequency on vigilant behavior, 
both the risk allocation and threat sensitivity hypotheses predict that 
prey will exhibit relaxed antipredator behavior on islands with reduced 
predation pressure.

Alternatively, the multipredator hypothesis may explain the per-
sistence of antipredator behavior despite reduced predation pressure 
(Blumstein, 2006). Antipredator behavior, including predator-specific 
responses, can be genetically linked to other functional behaviors 
(Coss, 1999), and the loss of one or some predators should have a 
minimal effect on the independent assortment of these genes (Curio, 
1973). For example, recognition systems that might be specific to a 
single predator may be linked and integrated with broader interspecific 
recognition strategies and, thus, the entire system would not be lost 
with the disappearance of a specific predator (Blumstein, 2006). Thus, 
the hypothesis predicts that the loss of one or some predators for spe-
cies with multiple predators should not lead to a substantial decline in 
antipredator behavior as long as one or a few predators remain.

Flight initiation distance (FID), the distance at which a prey flees 
from an approaching predator or threat, is a metric used to study wari-
ness in a variety of animals (Cooper & Blumstein, 2015). As FID has 
shown to be influenced by many of the same factors that contribute to 
an animal’s wariness, including group size (Burger & Gochfeld, 1991), 
distance to cover (Dill & Houtman, 1989), and season (Richardson & 
Miller, 1997), both biologists and wildlife managers regularly use FID 
as a metric of fear (Blumstein, Anthony, Harcourt, & Ross, 2003). We 
compared the FIDs of California quail (Callipepla californica) studied 
on Santa Catalina Island to quail studied on the California mainland. 
Optimal flight initiation distance maximizes prey fitness, by balancing 
the foraging costs of fleeing too early while danger is still low, against 
the risk of death from fleeing too late from a predator (Cooper, 2015). 
Therefore, an increase in predation risk (or the diversity of preda-
tors) should result in an increase in wariness and thus increased FID 
(Cooper & Frederick, 2007). Furthermore, it has been shown that, as 
distance from the mainland increases, FID decreases in lizards (Cooper 
et al., 2014). This suggests that the 47.1 km gap that isolates the island 
and has led to the reduction in predators compared to the California 
mainland will likely lead to shorter island FIDs.

Predictions from the risk allocation, threat sensitivity, and mul-
tipredator hypotheses were tested by comparing populations on an 
island with fewer predators to populations living on the mainland 
with a full complement of predators (Table 1). While both the risk 
allocation and threat sensitivity hypotheses predict a shorter FID 
in insular quail, the multipredator hypothesis predicts no changes in 
FID due to the presence of some predators. The island-associated 
reduction in predation threat due to substantially fewer predator 
species, as well as smaller predator populations compared to the 
mainland, make California quail an ideal study species for testing 

TABLE  1 California Quail Predators

Predatora Mainland Island

Class: Aves

American crow (Corvus brachyrhynchos)b • •

American kestrel (Falco sparverius) • •

Bald eagle (Haliaeetus leucocephalus) • •

Common raven (Corvus corax)b • •

Cooper’s hawk (Accipiter cooperii) •

Great horned owl (Bubo virginianus) •

Greater roadrunner (Geococcyx 
californianus)b

•

Northern harrier (Circus cyaneus) •

Northern pygmy owl (Glaucidium gnoma) •

Prairie falcon (Falco mexicanus) •

Peregrine falcon (Falco peregrinus) •

Red-tailed hawk (Buteo jamaicensis) •

Scrub jay (Aphelocoma californica) •

Sharp-shinned hawk (Accipiter striatus) •

Class: Mammalia

Black rat (Rattus rattus)b • •

Bobcat (Lynx rufus)b •

California chipmunk (Tamias obscurus)b •

California ground squirrel 
(Otospermophilus beecheyi)b

•

Catalina Island fox (Urocyon littoralis 
catalinae)c

•

Coyote (Canis latrans)b •

Feral cat (Felis catus)b • •

Gray fox (Urocyon cinereoargenteus)b •

Long-tailed weasel (Mustela frenata) •

Raccoon (Procyon lotor)b •

Red fox (Vulpes vulpes) •

Striped skunk (Mephitis mephitis)b •

Virginia opossum (Didelphis virginiana) •

Class: Reptilia

California kingsnake (Lampropeltis getula 
californiae)b

• •

California mountain kingsnake 
(Lampropeltis zonata)b

•

Gopher snake (Pituophis catenifer)b • •

Southern Pacific rattlesnake (Crotalus 
oreganus helleri),

•

Rattlesnake and other snakesb •

aGlading, 1938; Emlen & Glading, 1945; Leopold, 1977; Fielder, 1982; 
Alhborn, 1990; Shuford, 1993; Golightly, Faulhaber, Sallee, & Lewis, 1994; 
Klauber, 1997; Guttilla, 2007;  Calkins, Gee, Hagelin, & Lott, 2014.
bnest predators.
cWhether Island foxes eat quail is unclear, but scat analyses across all six 
Channel Islands suggest that birds comprise less than 5% of Catalina Island 
fox diets (Cypher et al., 2014). Although this could indicate that the foxes 
do feed on quail occasionally, birds ultimately comprise an insignificant por-
tion of island fox diets and would therefore not be common predatory 
targets.
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the key predictions of the risk allocation and threat sensitivity vs. 
multipredator hypothesis.

2  | MATERIALS AND METHODS

2.1 | Study site and subjects

California quail are ground-dwelling New World pheasants that con-
gregate in groups, known as coveys, which can range in size from 
two to thousand birds, but average fifty individuals (Calkins, 2007; 
Leopold, 1977). Quail were likely introduced to Catalina Island about 
12,000 years ago by Native Americans, and there is minimal genetic 
divergence between island and mainland quail populations (Zink, Lott, 
& Anderson, 1987).

We quantified fight initiation distance on Santa Catalina Island during 
Oct. 2016 and on the California mainland between Feb. and Apr. 2017. 
Although quail typically pair off during the nesting season, which begins 
in late March (Lewin, 1963), only birds congregated outside of nesting 
sites, within coveys, were tested. Both mainland and island birds were in 
coastal and oak chaparral habitat where hunting was prohibited (Table 
S1). The chaparral plant community was mainly composed of chamise 
(Adenostoma fasciculatum and Adenostoma rosaceae), scrub oaks (Quercus 
pacifica on Catalina; Quercus berberidifolia on mainland), native and non-
native grasses no taller than two feet high (Poaceae), low shrubland plants 
such as coastal sage scrubs, and coastal prickly pear (Opuntia littoralis) on 
Catalina (Backs & Ashley, 2016; Griffin, 1995; Haggerty & Mazer, 2010; 
Hein & de la Rosa, 2013). Quail in our experiment was almost always 
in open clearings surrounded by these shrubs and plants. We only per-
formed experiments and observations when we had an unobstructed 
approach to quail as we found them in their environment.

2.2 | Quantifying flight initiation distance

To conduct FID tests, we identified a “relaxed” individual quail (forag-
ing, preening, or walking; Blumstein, 2003). The observer walked to-
ward the focal individual at a speed of 0.5 m/s and measured three 
distances: the starting distance (SD), the alert distance (AD), and FID. 
Starting distance measured the distance between the observer and the 
focal individual when the observer initiated approach. If the focal sub-
ject was not relaxed, the observer increased SD and waited until the 
individual or covey was relaxed before initiating approach. To avoid any 
potential bias in SD, the observer only flushed birds that were grazing 
in clearings, free from any obstacles that might obstruct the observer’s 
approach or cause the observer to start closer or further away. Alert 
distance measured the distance the focal individual became alerted to 
the approaching observer by orienting its head toward the observer. 
Finally, FID measured the distance the focal individual became fled the 
approaching observer. We measured SD, AD, and FID using a range-
finder with a 100-meter range. Because quail rarely fly, their evasive 
behavior did not always involve winged flight; thus, escape as defined 
in our study included walking away from the observer. To avoid resa-
mpling, at each study site, we performed tests at different locations 
and at different times of the day and believe we identified individuals 

in different coveys. Even if occasional resampling occurred, modest re-
sampling has little effect on FID studies (Runyan & Blumstein, 2004).

2.3 | Statistical analyses

We log10 transformed FID and SD to normalize and homogenize the 
variances of the distribution of these variables after Levene’s tests 
revealed heterogeneity of variance. We examined variation in FID by 
fitting a general linear model with covey size (CS), SD, location (is-
land/mainland), and the interaction between SD and location (island/
mainland). Although we measured both SD and AD (when possible), 
only one variable is needed for analysis because SD and AD are highly 
correlated. We did not include AD as a covariate in our model because 
AD was difficult to determine for some of our approaches. In addition, 
we compared log10 SD on the island and mainland populations with a 
t test to test for differences in SD. We report the adjusted R2 of the 
general linear model, partial eta squared as a measure of effect size, 
and set our alpha to 0.05. We conducted all statistical tests using SPSS 
(v 24–IBM 2017).

3  | RESULTS

We flushed 32 individuals on the mainland and 34 on the island. After 
log10 transformation, the variance in FID on the island and mainland 
was not significantly different (Levene’s test p = .41). Our model 
(Table 2) explained approximately 58% of the variation in log10 FID 
as a function of log10 SD, location (island/mainland), covey size, and 
the interaction between SD and location. FID was not significantly 
influenced by location or covey size, or the effect of SD as a function 
of location, but was significantly influenced by SD only (Table 2). A t 
test (t = 2.29; p = .02) further revealed significantly shorter log10 SD 
on the island (X ± SD = 1.41 ± 0.32 m) compared to the mainland (X ± 
SD = 1.57 ± 0.22 m).

4  | DISCUSSION

Our results are consistent with the multipredator hypothesis 
(Blumstein, 2006), which predicts that the presence of any predator 

TABLE  2 Factors explaining variation in California quail flight 
initiation distance

Source
Unstandardized 
coefficient (B) p-value

Partial eta 
squared

Corrected Modela <.001 0.60

Intercept 0.02 .57 0.01

Location (Island) 0.12 .68 0.00

Log10 Covey Size 0.06 .27 0.02

Log10 SD 0.76 <.001 0.48

Location (Island)*log10 SD −0.11 .54 0.01

aAdjusted R squared = 0.575. Significant p-values are bold.
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will maintain fully expressed antipredator behaviors in prey popula-
tions that have lost some but not all predators. Additionally, our re-
sults contradict key predictions from both the risk allocation (Lima 
& Bednekoff, 1999) and threat sensitivity (Helfman, 1989) hypoth-
eses. Many of the carnivores present on the mainland are absent on 
Catalina Island, and thus, quail should experience some degree of 
relaxed selection for escape behaviors. However, there is a reduced 
complement of both aerial and terrestrial predators on Catalina Island 
and this seems to be sufficient to maintain the same level of wariness 
on the island as seen on the mainland.

The 12,000-year history of quail on Catalina Island makes it un-
likely that the birds will lose this response in the future as long as 
some predatory threats remain on the island (Collins, 2008; Zink et al., 
1987). Because antipredator genes are likely linked, the loss of some 
predators may not affect the antipredator responses for other preda-
tors (Blumstein, 2006). As the loss of costly behaviors may occur rap-
idly (50–70 years in moose at the Rocky Mountains and Alaska’s Cook 
Inlet–Berger, 1999; 25 years in moose at Alaska’s Kenai Peninsula–
Pyare & Berger, 2003; ≤130 years in tammar wallabies–Blumstein 
et al., 2004; one generation in captive birds–Carrete & Tella, 2015), 
if an island effect (Cooper et al., 2014; Darwin, 1839) were at play, 
the results of such an effect should be apparent in this study (Berger, 
Swenson, & Persson, 2001).

While FID was not significantly different between the two pop-
ulations, the SD differed; we began to approach relaxed insular quail 
at closer distances. Although it may seem that SD is determined by 
the predator, it is also partly determined by the prey as well as hab-
itat openness and visibility (Samia et al., 2017). Importantly, we 
used identical methods when flushing quail in both locations and it 
was necessary for us to increase our SD from quail that required a 
longer distance to be relaxed before experimentation. As habitat, or 
habitat openness, did not differ in any obvious way and quail were 
found in similar oak chaparral both on the island and on the main-
land, we suspect the shorter SD in insular birds is due to reduced 
wariness of approaching predators, but not enough such that FID is 
also shorter. However, there is no previous evidence to suggest that 
SD (among other escape-related variables) is indicative of antipreda-
tory response strength and our findings support further investigation. 
SD is positively correlated with FID (Blumstein, 2003; Cooper, 2005; 
Cooper & Sherbrooke, 2015; Fleming & Bateman, 2017; Møller, 2012; 
Stankowich & Coss, 2006), and the flush early hypothesis explains that 
earlier predator detection increases the need to monitor an approach-
ing predator, causing prey to flush early to reduce this cost (Blumstein, 
2010; Chamaillè-Jammes & Blumstein, 2012; Cooper, 2015).

The retention of antipredator behavior in quail despite the re-
duced predation on Catalina Island is consistent with a study on 
Catalina Island orange-crowned warblers (Oreothlypis celata) that 
showed that the presence of predatory ravens on an island otherwise 
devoid of avian nest predators allowed the retention of antipreda-
tor behavior when tested against experimental model predators 
(Peluc, Sillett, Rotenberry, & Ghalambor, 2008). Furthermore, Island 
scrub jays (Aphelocoma insularis) maintained egg rejection as a de-
fensive behavior against brood parasitism in the absence of brood 

parasites on the island (Peer, Rothstein, Delaney, & Fleischer, 2007), 
supporting the idea that defensive behaviors can be maintained fol-
lowing the loss of a threat. However, our results are inconsistent 
with a study showing increased exploratory activity in Island scrub 
jays in comparison with mainland California scrub jays (Aphelocoma 
californica), but this may possibly be explained by food shortages 
in addition to reduced predation on the island (Haemig, 1988). 
Further studies on risk assessment may clarify the causes of such 
discrepancies.

Future work should focus on determining factors that may explain 
differences in SD, but not flight initiation distance, between popu-
lations with differing predation threats, including increased urban-
ization (Samia et al., 2017). Regardless, our results add to a growing 
body of literature that supports the multipredator hypothesis. For 
systems where the hypothesis applies, the multipredator hypothesis 
has important implications for wildlife conservation and management 
because it gives us the tools to predict the conditions under which 
escape behaviors will be maintained following the loss and reintroduc-
tion of predators.
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