Pets at ecotourism destinations: cute mascot or trojan horse?

Eduardo Bessa, Daniel T. Blumstein, Diogo S. M. Samia & Benjamin Geffroy

To cite this article: Eduardo Bessa, Daniel T. Blumstein, Diogo S. M. Samia & Benjamin Geffroy (2018): Pets at ecotourism destinations: cute mascot or trojan horse?, Current Issues in Tourism, DOI: 10.1080/13683500.2018.1449192

To link to this article: https://doi.org/10.1080/13683500.2018.1449192

Published online: 11 Mar 2018.
ABSTRACT
Alien species are threatening native fauna worldwide and cats and dogs have well-documented deleterious impacts on wildlife. Ecotourism operators often live and raise their pets in natural reserves. Here we discuss how pets add to the list of potential negative impacts of ecotourism and provide recommendations to control or attenuate such impacts.

Invasive species are considered the second most important cause of human-induced species extinction, closely behind habitat destruction (Bellard, Cassey, & Blackburn, 2016). Two of the most often introduced species are dogs and cats. In the US alone, there are an estimated 89.7 million dogs and 94.2 million cats living with humans (American Pet Products Association [APPA], 2014). Worldwide, there are likely billions of dogs in around 60% of homes (APPA, 2014). However, cats and dogs and ecotourism impacts have been a neglected correlation.

It is generally accepted that cats are a threat to native species, especially birds, reptiles and small mammals. In the US alone, cats are estimated to kill as many as 3 billion birds and 20 billion mammals per year (Loss, Will, & Marra, 2013). In Australia, cats kill about 377 million of birds each year, among which 99% are native species (Woinarski et al., 2017). While the effect is most pronounced on ground dwelling ‘critical weight range species’ in arid areas (Johnson & Isaac, 2009), cats are effective predators and may consume wild prey as big as 4 kg (Fancourt, 2015). On islands, cats are responsible for the extinction of at least 33 endemic species (Nogales et al., 2013). Cats have been reported as predators of an endangered insular bat (Rocha, 2015), a threatened sea cormorant (Muzaffar, Benjamin, & Gubiani, 2013) and 63 other species (Doherty, Glen, Nimmo, Ritchie, & Dickman, 2016).

Dogs also are responsible for at least 11 extinctions and reducing population size of 188 species, effectively threatening their survival (Doherty et al., 2017). In Chile, dogs’ predatory effects have modified a cervid’s distribution (Silva-Rodríguez & Sieving, 2012). In Brazil, dogs negatively impact more than half the endangered vertebrate species (Lessa, Guimarães, de Godoy Bergallo, Cunha, & Vieira, 2016). In Australia, hiking trails where people are permitted to walk dogs have fewer birds than trails where dogs are banned (Banks & Bryant, 2007). Together, our two most common pets are responsible for declines in population sizes, and, in extreme cases, extinction of species. Nevertheless, there has not been many attempts to put pets’ negative impacts into context.

While cats and dogs are key drivers of faunal extinction by predation, they have other deleterious effects: they may compete with or disturb native wildlife, introduce diseases into wild populations, facilitate other invasions or hybridize with native species (Hughes & Macdonald, 2013; Medina, Bonnauad, Vidal, & Nogales, 2014). In Brazil, competition and disturbance by dogs on native fauna

CONTACT Eduardo Bessa profbessa@unb.br; edu_bessa@yahoo.com

© 2018 Informa UK Limited, trading as Taylor & Francis Group
yield more deleterious effects than predation (Lessa et al., 2016). Dogs and cats (in addition to Norway rats) introduced trypanosome-transmitting fleas into Christmas Island, Australia, which drove a native rodent to extinction (Wyatt et al., 2009). Invasive cats hybridizing with Scottish wild cats increased its extinction risk (Kitchener, Yamaguchi, Ward, & Macdonald, 2005). And, dogs can potentially hybridize with Iberian and Ethiopian wolves, coyotes, African wild dogs, and golden and black-backed jackals (Leonard, Echegaray, Randi, Vilà, & Gompper, 2014).

Pets in nature-tourism areas add to the extensive list of ecotourism’s impacts on wildlife (Blumstein, Geffroy, Samia, & Bessa, 2017). Clearly, well-controlled pets will have less of an impact than feral dogs and cats (Loss et al., 2013). Nevertheless, stray housecats are the main source of feral cats, and pet cats left to roam outside will have negative impacts.

Most ecotourists are well informed of the potential consequences that come with bringing their own pets into natural areas, but this information has to reach all travellers (Carr & Cohen, 2009). In highly visited places, such as the Galapagos, communication surrounding the risks associated with pets is well known and pets are officially prohibited (Padilla, Gottdenker, Deem, & Cruz, 2018). Despite that, in small natural areas, or in locations with less informed managers, operators may own cats and dogs as we have personally observed in many locations. In Table 1 we include a list of recommendations for dealing with these animals.

Identifying and managing domestic pets around ecotourism areas has not been fully recognized as a cost of ecotourism, creating a gap in the literature about tourism impacts. The efficacy of these management suggestions must be studied, but if effective, they may reduce yet another cost of ecotourism. By doing so, we may be able to better use ecotourism to preserve biodiversity which, ultimately, is one of its primary goals. The same way that subsistence hunting is banned in ecotourism areas, we believe that pet ownership should be strictly controlled.

Acknowledgements

We would like to thank Diana Agudelo for inspiring the initial idea for this paper and two anonymous reviewers for their suggestions.

Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

Eduardo Bessa http://orcid.org/0000-0003-0606-5860
Daniel T. Blumstein http://orcid.org/0000-0001-5793-9244
Benjamin Geffroy http://orcid.org/0000-0001-6120-1103

References

