¹ Measuring individual identity information in animal signals:

- 2 Overview and performance of available identity metrics
- 3
- 4 Pavel Linhart¹, Tomasz Osiejuk¹, Michal Budka¹, Martin Šálek^{2,3}, Marek Špinka⁴, Richard Policht^{4,5},
- 5 Michaela Syrová^{4,6}, Daniel T. Blumstein^{7,8}
- 6
- 7 Affiliations:
- 1 Department of Behavioural Ecology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan,
 Poland
- 2 The Czech Academy of Sciences, Institute of Vertebrate Biology, Květná 8, 603 65 Brno, Czech
 Republic
- 12 3 Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 1176,
- 13 Suchdol, 16521 Prague, Czech Republic
- 4 Department of Ethology, Institute of Animal Science, Přátelství 815, Prague, Uhříněves, 104 00,
 Czech Republic
- 16 5 Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences,
- 17 Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6, Czech Republic
- 6 Department of Zoology, Faculty of Sciences, University of South Bohemia, Branišovská 31a, České
 Budějovice, 370 05, Czech Republic
- 20 7 Department of Ecology and Evolutionary Biology, University of California, 621 Young Drive South,
- 21 Los Angeles, CA 90095-1606, USA
- 22 8 Rocky Mountain Biological Laboratory, Box 516, Crested Butte, CO 81224, USA
- 23
- 24 Corresponding author: Pavel Linhart
- 25

26 Abstract

27	1.	Identity signals have been studied for over 50 years but there is no consensus as to how to
28		quantify individuality. While there are a variety of different metrics to quantify individual
29		identity, or individuality, these methods remain un-validated and the relationships between
30		them unclear.
31	2.	We contrasted three univariate and four multivariate metrics (and their different
32		computational variants) and evaluated their performance on simulated and empirical
33		datasets.
34	3.	Of the metrics examined, Beecher's information statistic (H_s) was the best one and could
35		easily and reliably be converted into the commonly used discrimination score (and vice
36		versa) after accounting for the number of individuals and calls per individual in a given
37		dataset. Although Beecher's information statistic is not entirely independent of sampling
38		parameters, this problem can be removed by reducing the number of parameters or by
39		increasing the number of individuals.
40	4.	Because it is easily calculated, has superior performance, can be used to describe single
41		variables or signal as a whole, and because it tells us the maximum number of individuals
42		that can be discriminated given a set of measurements, we recommend that individuality
43		should be quantified using Beecher's information statistic.
44	Κεγωο	rds: Individual recognition, Social behavior, Identity signal, Beecher's Information Statistic,
45	Acousti	ic identification, Acoustic discrimination, Vocal individuality, Discriminant analysis

46

47 Introduction

48	The fact that conspecific individuals differ in consistent ways underlies a number of theoretically
49	important questions in biology such as explaining cooperative behavior or understanding the
50	evolution of sociality (Crowley et al., 1996; Bradbury & Vehrencamp, 1998; Tibbetts, 2004). Because
51	it may be advantageous for animals to choose with whom they interact or respond to (Wilkinson,
52	1984; Godard, 1991), there may be selection both to produce individually-distinctive signals and to
53	discriminate among them (Tibbetts & Dale, 2007; Wiley, 2013). Individually-distinctive traits can also
54	be used to help wildlife population censuses or to monitor individuals (Terry & McGregor, 2002;
55	Blumstein et al., 2011). For these purposes, identity information in animal signals has been quantified
56	by several different univariate and multivariate metrics, especially in the acoustic domain (Miller,
57	1978; Hafner, Hamilton, Steiner, Thompson, & Winn, 1979; Beecher, 1989; Searby & Jouventin, 2004;
58	Mathevon, Koralek, Weldele, Glickman, & Theunissen, 2010).
59	For identity signals to function properly, they should maximize the between-individual variation
60	and minimize the within-individual variation. Therefore, to quantify an individual's identity we
61	require repeated measurements of one or more traits on a given set of individuals within a
62	population. This is well acknowledged in the study of acoustic signals (e.g., Hutchison, Stevenson, &
63	Thorpe, 1968; Beecher, 1989; Robisson, Aubin, & Bremond, 1993). A typical study of acoustic identity
64	signaling would record large number of vocalizations from each individual under different conditions
65	(different time intervals, distances, etc.), measure a set of acoustic traits (e.g., fundamental
66	frequency, duration, formant structure, frequency modulation, etc.), and then calculate the
67	individual identity either directly through comparing between and within individual variation, or
68	indirectly through discrimination between individuals. In studies of chemical or visual signals, robust
69	assessment of within-individual variation by having many replicates from a single individual remains
70	uncommon (Kondo & Izawa, 2014; but see, e.g., Kean, Chadwick, & Müller, 2015) although
71	quantification of individual identity might be expected in future studies.

72	A variety of identity metrics have proliferated because the existing metrics were considered
73	biased (Beecher, 1989; Mathevon et al., 2010) or unsuitable for a particular signal type (Searby $\&$
74	Jouventin, 2004). Furthermore, different equations have been sometimes used to calculate the same
75	identity metric (Beecher, 1989; Lein, 2008; Charrier, Aubin, & Mathevon, 2010; Linhart & Šálek,
76	2017). Thus there is no consensus about how to properly measure identity. As a result, researchers
77	have generally avoided quantitative comparisons between studies (Insley, Phillips, & Charrier, 2003),
78	although there have been a few of using exactly the same methods for several different species
79	(Beecher, Medvin, Stoddard, & Loesche, 1986; Lengagne, Lauga, & Jouventin, 1997; Pollard &
80	Blumstein, 2011). The lack of a commonly used identity metric is a major impediment toward
81	understanding the evolution of identity signaling and indeed, the evolution of individuality.
82	Here we review previously developed univariate and multivariate metrics that have been used to
83	quantify individual identity information in signals and we test their performance on simulated and
84	empirical datasets. In particular, we investigated the following metrics: F-value, Potential of
85	individual coding PIC, Beecher's information statistic H_s , Efficiency of modulated signature H_M , and
86	Mutual information MI. We further evaluated different computational variants found in literature in
87	case of PIC and H_s (see Methods and Supplement 1 for a detail overview of metrics and their
88	variants).
89	We compare the performance of metrics to a hypothetical ideal identity information metric. We
90	propose that ideal identity metric should have two basic characteristics: 1) it should not be
01	propose that recardenity methe should have two basic characteristics. This should not be
91	systematically blased by study design (no systematic effects of number of individuals in a study and
92	number of calls per individual in a study); and 2) in the multivariate case (i.e., when it is used to
93	quantify individuality based on measurements of multiple signal features), it should rise with number
94	of meaningful parameters and decrease with covariance between them. Also, for both univariate and
95	multivariate case, we expect the metric will have a meaningful zero in case there is no identity

96 content in a signal. Finally, we expect no upper limit on the degree of individuality; in theory, and

- 97 given sufficient variation and variables, one could discriminate among an infinite number of
- 98 individuals. We also wished to see if each of two commonly used metrics (Beecher's information
- 99 statistic H_s, and discrimination score DS) could be converted to the other metric to facilitate
- 100 comparative analyses of the evolution of individuality.

101 Material and methods

- 102 We used R for simulations and statistical analysis (R Core Team, 2012). Our simulated and empirical
- 103 data along with analysis scripts are available on GitHub (Linhart, 2018).

104 Datasets

- 105 Simulated datasets. We constructed datasets with univariate and multivariate normal distributions
- 106 with parameters covering wide range of values individuality (id = 0.01, 1, 2.5, 5, 10), number of
- observations / calls per individual (o = 4, 8, 12, 16, 20), number of individuals (i = 5, 10, 15, 20, 25, 30,
- 108 35, 40), and, for multivariate datasets, the covariance among variables (cov = 0, 0.25, 0.5, 0.75, 1)
- and the number of variables (p = 2, 4, 6, 8, 10). Individuality (id) represents ratio of standard
- 110 deviations between and within individuals (id = SD_{between} / SD_{within}; SD_{between} was calculated from
- 111 means for each individual). A single covariance (cov) value was used in the variance-covariance
- 112 matrix to define covariances between all pairs of variables (detailed description in Supplement 2).
- 113 We asked how dataset parameters (i, o, p, cov, id) influenced the value of each identity metric. To
- explore this, all combinations of dataset parameters were exhaustively sampled with 20 iterations on
- each unique combination of parameters. In each iteration, a new dataset was generated to ensure
- 116 independence between samples. We developed R scripts involving "rnorm" and MASS package
- 117 (Venables & Ripley, 2002) "mvrnorm" function to generate the datasets.

bioRxiv preprint first posted online Feb. 10, 2019; doi: http://dx.doi.org/10.1101/546143. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.

Figure 1. Illustration of three artificial multivariate datasets that differ only in the individuality used
to generate datasets. Settings for the function generating these datasets: i = 5, o = 10, p = 2, cov = 0,
id = 0.01, 3, and 10

122 **Empirical datasets.** We used six datasets from four different species: little owls Athene noctua 123 (ANmodulation, ANspec) (Linhart & Šálek, 2017), corncrake Crex crex (CCformants, CCspec) (Budka & 124 Osiejuk, 2013), yellow-breasted boubous Laniarius atroflavus (LAhighweewoo) (Osiejuk et al. 125 unpublished data), and domestic pigs Sus scrofa (SSgrunts) (Syrová, Policht, Linhart, & Špinka, 2017) 126 (Figure 2). In two species – corncrakes and little owls – calls were described by two different sets of 127 variables. In little owls, we described calls by frequency modulation (ANmodulation) or parameters 128 describing the distribution of the frequency spectrum (ANspec). In corncrakes, we used formants 129 (CCformants) and parameters describing the distribution of the frequency spectrum (CCspec). 130 Because datasets varied with respect to the number of individuals (33 – 100) and the number of calls 131 per individual available (10 - 20), we scaled all datasets down to lowest common denominator by 132 randomly selecting individuals and calls from bigger datasets. Eventually, each dataset had 33 133 individuals and 10 calls per individual. Each dataset also used different numbers of variables to 134 describe the calls' acoustic structure (ANmodulation = 11, ANspec = 7, CCformants = 4, CCspec = 7, 135 LAhighweewoo = 7, SS grunty = 10). In all these empirical datasets, assumptions of multivariate 136 normality were tested (Korkmaz, Goksuluk, & Zararsiz, 2014), but not met. This issue is common for 137 research studies on acoustic individual identity. Authors deal with it by eliminating problematic 138 variables (e.g., Sousa-Lima, Paglia, & da Fonseca, 2008; Couchoux & Dabelsteen, 2015), using non-

- 139 parametric classification methods (e.g., Tripovich, Rogers, Canfield, & Arnould, 2006; Mielke &
- 140 Zuberbuehler, 2013), or by relying on robustness of cross-validated DFA towards relaxed
- assumptions (e.g., Mathevon et al., 2010; Schneiderová, 2012). We used the last approach. If the
- assumptions of discriminant analysis are not met the results should be less stable when using
- 143 different sampling and hence our results should be conservative.

144

Figure 2. Illustration of empirical datasets. Five individuals were randomly sampled from each
dataset of 33 individuals and all 10 calls per individual were selected. H_S for a full dataset is shown.
Data were centered and scaled and subjected to PCA. The first two Principal Components are
plotted.

149 R functions to calculate individuality metrics

150 The following scripts were used to calculate seven variants of three univariate metrics: F value

151 (calcF), Potential of individual coding PIC (calcPICbetweentot, calcPICbetweenmeans), and Beecher's

- 152 information statistic (calcHSntot, calcHSnpergroup, calcHSngroups, calcHSvarcomp). PIC is defined as
- a ratio of between-individual to within-individual coefficients of variation (e.g., Robisson et al., 1993;

154 Lengagne et al., 1997):

$$PIC = \frac{CV_b}{CV_w} \tag{1}$$

Two variants of PIC differ in whether CV_b in the formula is calculated from all values (PIC_{betweentot})
(e.g., Charrier et al., 2010), or means for each individual are calculated first and CV_b is then calculated
from these means (PIC_{betweenmeans}) (e.g., Lein, 2008). H_s is based on F-value but unlike F-value, H_s
accounts for sample size:

$$H_S = \log_2 \sqrt{\frac{F+n-1}{n}}$$
(2)

159 The source of confusion is the 'n' in the formula. Total sample size (H_{Sntot}), number of groups (i.e.,

160 individuals) (H_{Sngroups}), and number of samples per group (H_{Snpergroup}) could all be used as 'n' in this

161 equation. Some studies explicitly state they used number of individuals as 'n' (e.g., Pollard,

162 Blumstein, & Griffin, 2010; Linhart & Šálek, 2017), but the properties of H_s values in these studies did

163 not match the properties suggested in the original article by Beecher (1989). Yet another approach to

164 calculate H_s is to extract the variance component estimates and use the total (\mathbb{D}_T) and the residual

165 variance (🛛_W, associated with random factor) to calculate H_s (H_{svarcomp}) (Beecher, 1989; Carter,

166 Logsdon, Arnold, Menchaca, & Medellin, 2012):

$$H_S = \log_2 \frac{\sigma_T}{\sigma_W} \tag{3}$$

167

168 The following scripts were used to calculate multivariate metrics: calcDS, calcHSnpergroup, 169 calcHM, calcMI. The calcDS is based on 'Ida' ('MASS' package). The calcMI function uses 'Ida' ('MASS' 170 package) and 'mutinformation' ('infotheo' package).

171 Multivariate identity metrics were always calculated from data (simulated or empirical) that 172 were centered to have a mean of zero, scaled to unit variance, and subjected to principal component 173 analysis.

174 Statistical analysis

175	Our goal was to ask whether there are systematic biases for each identity metric given different
176	parameters that reflect sampling design. The relationship between a given identity metric and each
177	of the parameters was assessed graphically by plotting the mean value and the 95% confidence
178	intervals of an identity metric against all of the modelled data parameters separately. We then used
179	a one-way ANOVA to test whether an identity metric was constant across all levels of a parameter. If
180	we found significant differences, we followed up these with post-hoc Tukey tests to identify which
181	parameter levels differed. Due to high number of comparisons, we only reported comparisons of
182	neighboring parameter levels. We used linear and non-parametric loess regression to convert H_s to
183	DS and vice versa. Loess regression included the number of individuals and number of calls per
184	individual as additional predictors. We used Spearman correlation coefficients to quantify between-
185	metric consistency of ranking individuality in datasets. Pearson correlations were used to assess
186	consistency within identity metrics in full and partial datasets. We then used Friedman test, followed
187	by a series of Wilcoxon tests (for post-hoc comparison of differences between levels), to compare
188	correlation coefficients obtained for each pair of the metrics.

190 Results

191 The comparison of available univariate and multivariate metrics to an ideal metric is shown in Table

192 1.

	zero	limit	id	cov	р	0	i	points
Univariate Metr	Univariate Metrics:							
ideal	у	n	+			ns	ns	5/5
F	у	n	+			+	ns	4/5
$PIC_{betweentot}$	n	n	+			ns	ns	4/5
$PIC_{betweenmeans}$	n	n	+			ns	ns	4/5
H_{Sntot}	у	n	+			ns	-	4/5
$H_{Snpergroup}$	у	n	+			ns	ns	5/5
$H_{Sngroups}$	у	n	+			+	-	3/5
$H_{Svarcomp}$	у	n	+			ns	ns	5/5
Multivariate Metrics:								
ideal	у	n	+	-	+	ns	ns	7/7
DS	у	У	+	-	+	+	-	4/7
H _s	у	n	+	-	+	ns	+	6/7
H _M	у	n	+	ns	ns	ns	ns	5/7
MI	n	У	+	-	+	-	+	3/7

193

194

Table 1. The comparison of available univariate and multivariate metrics to a hypothetical ideal
metric. We summed the number of matches (points) to compare different metrics to the ideal
metric. Non-matching cells are highlighted in grey background. 'zero' – metric has a meaningful zero;
'limit' – metric is limited from the top by an asymptote; 'id' – change in response to increasing

- 199 identity information in data; 'cov' response to increasing covariance between variables; 'p' –
- 200 response to increasing number of variables; 'o' response to increasing number of calls per
- 201 individual; 'i' response to increasing number of individuals; 'y'- yes; 'n' no; '+' increase; '-' –
- 202 decrease; 'ns' not significant, does not change with a parameter.
- 203 Univariate metrics
- 204 Univariate metrics: F, PIC variants (PIC_{betweentot}, PIC_{betweenmeans}), H_s variants (H_{Sntot}, H_{Snpergroup}, H_{Sngroups},
- 205 H_{Svarcomp}).
- 206 All explored univariate metrics increased with increasing individuality in the data. However, only
- 207 PIC_{betweentot}, PIC_{betweenmeans}, H_{Snpergroup} and H_{Svarcomp} estimates were independent of the number of calls
- and the number of individuals used to calculate the metric (Figure 3). These general patterns were
- 209 qualitatively identical when all results were pooled or if only one of the parameters (number of calls,
- 210 number of individuals, individuality) was changed at a time and the others were kept constant at the
- 211 middle value (see Supplement 3 for detailed results including ANOVA tests).
- 212 All four sampling-independent metrics (PIC_{betweentot}, PIC_{betweenmeans}, H_{Snpergroup} and H_{Svarcomp}) were
- highly correlated (Spearman correlation, all r > 0.99). H_{Snpergroup} and H_{Svarcomp} correctly converged to 0
- in the case when individuality was set to be negligible (id = 0.01), while PIC_{betweentot} and PIC_{betweenmeans}
- 215 converged to higher values (1.01 and 0.32 respectively). $H_{Svarcomp}$ was equal to 2 * $H_{Snpergroup}$ (see
- Supplement 4 for details). We further considered only the H_{Snpergroup} in multivariate analyses.
- 217 Overall, H_s performed best and best matched the characteristics of an ideal metric (Table 1).

- 219 **Figure 3.** Variation in univariate identity metrics in response to artificial dataset parameters:
- individuality, number of calls per individual, and number of individuals. Means and 95% confidence
- intervals are shown. Graphs were plotted using all data pooled together.
- 222 Multivariate metrics
- 223 The performance of multivariate identity metrics is illustrated in Figure 4. All metrics increased with
- 224 increasing individuality. DS, H_s, and MI increased with increasing number of variables available and
- 225 decreased with increasing covariance between variables. Only H_M did not change in response to
- 226 increasing the number of individuals. H_s and H_M did not change in response to increasing the number
- 227 of calls per individual. These general patterns were qualitatively identical when all results were
- 228 pooled or if one parameter was changed at a time and others were kept constant at the middle value
- 229 (see Supplement 5 for detailed results including ANOVA tests).

230

- 233 variables, number of variables, number of calls per individual, and number of individuals in artificial
- data. Means and 95% confidence intervals are shown.
- 235 Despite the different response of metrics to some of the simulated parameters, there was still
- 236 moderate to high agreement among metrics about identity content in the data (Spearman

correlations, mean $r \pm SD = 0.82 \pm 0.07$; minimum r = 0.71 for correlation between DS and MI;

- 238 maximum r = 0.95 for correlation between DS and H_s). H_s had the greatest correlations with other
- 239 metrics (average R = 0.88). We found no advantage to using H_M over H_s as previously suggested.
- 240 Instead, H_M was equal to H_S per variable ($H_M = H_S / p$) (Supplement 6).
- 241 Thus, our simulations show that H_s performed best and matched the characteristics of the ideal
- 242 metric in 6/7 cases, followed by H_M (5/7), DS (4/7), and MI (both 3/7) (Table 1).

243 Potential for removing bias in H_S

244 We observed no significant association between H_s and the number of individuals in the univariate 245 case so the question arose about the precise cause of the bias in the multivariate case. This bias was 246 only present when data were subjected to Principle Components Analysis (PCA). However, PCA is 247 required to create uncorrelated components for H_s calculation. It is possible that the more variables 248 measured, the more individuals need to be sampled in order to reduce this bias. We therefore fixed 249 the number of variables to 5, 10, and 20 (p = 5, 10, 20) and varied the ratio of number of individuals 250 to number of variables 'i to p ratio' from 0.5 to 5 ('i to p ratio' = 0.5, 1, 1.5, 2, 3, 5) by using different 251 numbers of individuals in our simulations (i = 3, 5, 8, 10, 15, 20, 25, 30, 40, 50, 60, 100 depending on 252 number of variables and "i to p ratio"). The number of calls per individual was set to 10. Individuality 253 and covariance were both chosen randomly in each iteration from predefined intervals used in the 254 earlier simulations (covariance range = [0, 0.25, 0.5, 0.75, 1]; individuality range = [0.01, 1, 2.5, 5, 255 10]). We used 100 and 1000 iterations for each 'i to p ratio' to get less and more conservative 256 estimates. H_s did not rise significantly after the number of individuals reached at least the number of 257 parameters in case of 100 iterations (One-way ANOVA F_{5, 1794} = 7.68, P < 0.001; no significant

- differences between levels if 'i to p' \ge 1, all p > 0.132) (Figure 5), or at least twice the number of
- 259 parameters in case of 1000 iterations (one-way ANOVA F_{5, 17994} = 63.19, P < 0.001; no significant
- 260 differences between levels if 'i to p' \ge 2, all p > 0.104).

261

Figure 5. H_s and "i to p ratio" (number of individuals / number of variables) for situation with 100
iterations. H_s was under-estimated if there are fewer individuals than variables. Means and 95%
confidence intervals are shown.

265 Converting DS to H_S and vice versa

266 We used simple linear regression and non-parametric loess regression to estimate H_s based on DS 267 and vice versa. There was a previously suggested linear relationship that had a limit of H_s = 8 where 268 the DS values were 100% correct discrimination (Beecher 1989). Because the H₅ values in our original 269 simulated datasets far exceeded 8 in many cases (maximum $H_s = 32.9$), we generated a new set of 270 simulated datasets with individuality ranging between 0.1 and 2 (id = 0.1, 0.25, 0.5, 0.75, 1, 1.33, 271 1.66, 2), covariance set to zero (cov = 0), number of iterations was reduced to 10 (it = 10), and other parameters were set as in previous models (p = 2, 4, 6, 8, 10; i = 5, 10, 15, 20, 25, 30, 35, 40; o = 4, 8, 272 273 12, 16, 20). These settings led to H_s values up to 13.0 for data used for model building, and H_s values up to 14.4 in the case of data used for model testing. These values are much closer to 8 and also 274 275 much closer to H_s values reported from nature.

276	Loess models took into account specific sampling of the dataset; specifically, we included as
277	predictors the number of calls per individual and the number of individuals. We compared the loess
278	conversion and linear conversion models of DS and H_s . In general, loess estimates were closer to the
279	ideal prediction (intercept = 0, beta = 1) and the loess model reduced error of both DS and H_s
280	estimates to about a half compared to linear estimates (Figure 6). Both H_{s} estimates were
281	underestimated for high values of H_s . The ceiling value is clearly apparent for linear estimates of H_s . It
282	is still visible in case of loess estimates but loess predictions remain reasonably good up to about H_s =
283	10.

Figure 6. Estimation of H_s and DS based on linear and loess transformation of DS and H_s respectively

286	for datasets with H _s up to 14.4. Linear DS estimation: Intercept = 0.07, Beta = 0,83, R^2 = 0.83,
287	Standard Error of Estimate (SEE) = 0.12, 95% Prediction interval = predicted value \pm 0.23; DS loess
288	estimation: Intercept = 0.01, Beta = 0.98, R^2 = 0.97, Standard Error of Estimate (SEE) = 0.05, 95%
289	Prediction interval = predicted value \pm 0.10. Linear H _s estimation: Intercept = 0.51, Beta = 0.83, R ² =
290	0.83, Standard Error of Estimate (SEE) = 1.14, 95% Prediction interval = predicted value ± 2.24; HS
291	loess estimation: Intercept = 0.11, Beta = 0.98, R ² = 0.95, Standard Error of Estimate (SEE) = 0.64,
292	95% Prediction interval = predicted value \pm 1.26.
293 294	Correlations between calculated and estimated metrics We were further interested in how H_{Sest} and DS_{est} might represent H_S and DS of a particular sample of
295	individuals or H_{sfull} and DS _{full} of the whole population. For this purpose, we first generated 50 full
296	datasets with different identity levels representing 50 hypothetical populations of different species.
297	Each dataset comprised of 40 individuals, 20 calls per individual, and 10 parameters. For these
298	datasets, individuality was set randomly ranging between 0.2 – 2 (0.1 increments), and the
299	covariance was set randomly ranging between 0.2 – 0.8 (0.1 increments). These settings generated
300	datasets with H_{Sfull} values that ranged from 0.22 – 9.89 (mean ± sd: 4.72 ± 2.95). Then, we repeatedly
301	subsampled these datasets to get partial datasets which simulate different sampling of the
302	population. We subsampled 5-40 individuals and 4-20 calls per individual per dataset in each of total
303	20 iterations. We also repeatedly subsampled our empirical datasets. We subsampled 5-33
304	individuals and 4-10 calls per individual per dataset in each of total 20 iterations. The number of
305	parameters was not randomized – we always kept the original number of variables.
306	In simulated datasets, H_s and H_{sest} were correlated almost perfectly with each other and with
307	H _{sfull} (all average Pearson r > 0.97). There was no difference among correlation coefficients from
308	correlations between H_{sfull} , H_s , and H_{sest} (Friedman Chi Square = 3.6, p = 0.165). In empirical datasets,
309	H_s calculated on partial datasets still reflected the H_{sfull} almost perfectly (average Pearson r = 0.99).
310	While H_{sest} reflected H_s of partial dataset (average Pearson r = 0.90), and H_{sfull} (average Pearson r =

311	0.88) was slightly worse, it remained a reasonable fit. However, H_{Sest} did not reflect H_{Sfull} as precisely
312	as it did H _s (Friedman Chi Square = 33.6, p < 0.001, post-hoc test: H _s - H _{sfull} vs. H _{sest} - H _{sfull} , p < 0.001).
313	DS in simulated datasets, was almost perfectly correlated with DS_{est} (average Pearson r = 0.99).
314	Although the relationship between DS and ${\sf DS}_{\sf est}$ was significantly worse in a full dataset (${\sf DS}_{\sf full}$)
315	(Friedman Chi Square = 40.0, $p < 0.001$; both post-hoc tests: $p < 0.005$), these associations remained
316	strong (DS _{full} and DS: average Pearson r = 0.95; DS_{full} and DS_{est} : average Pearson r = 0.96). In empirical
317	datasets, the correlation between DS and DS _{est} was lower than in case of artificial datasets (average
318	Pearson r = 0.91). DS and DS_{est} of partial datasets had comparable correlations to DS_{full} (DS_{full} and DS_{full}
319	average Pearson r = 0.88; DS_{full} and DS_{est} : average Pearson r = 0.86). Thus, the performance of DS and
320	DS_{est} to reflect each other or DS_{full} did not differ (Friedman Chi Squre = 0.9, p = 0.638).

321 Discussion

322 All identity metrics had systematic biases that emerged from sampling decisions. Biases induced by

the number of individuals and the number of calls per individual in a sample both decreased with

 $324 \qquad \text{improving sampling.} \ H_s \ \text{was closest to an ideal identity metric in the univariate case when identity}$

325 was assessed for a single variable, as well as in multivariate case when identity was assessed for a set

of several different variables. The bias caused by the number of individuals in the sample used to

327 calculate H_s could be removed by having at least the same number of individuals as the number of

328 variables. H_s was the most consistent metric and best correlated with DS and other identity metrics.

329 H_s could be converted reliably into DS and vice-versa.

Univariate identity metrics. Beecher's information statistic (H_s) (Beecher et al., 1986; Beecher, 1989) and Potential for individual coding (PIC) (Robisson et al., 1993; Lengagne et al., 1997) were both suggested as unbiased alternative metrics to F values. We confirmed that both H_s (when calculated properly) and PIC provide unbiased estimates of identity information. Further, we show that these two metrics are almost perfectly correlated and, hence, in general, they both measure the same thing. PIC reflects the number of potential individual signatures within a population in same

336	way as 2^{H_s} does. However, PIC slightly differs from H_s and deviates from expected zero values if there
337	is low identity content in a signal that approaches zero. It is important to realize that variables with
338	$PIC_{betweentot}$ value > 1 need not convey meaningful individual information as commonly assumed.
339	Using the PIC _{betweentot} does not create overly spurious conclusions but rather including more less-
340	important variables increases noise in subsequent analyses. Studies using the number of individuals
341	as 'n' to calculate H_s most likely under-estimates the real H_s value because the number of individuals
342	is typically higher than the number of calls per individual in those studies. H_s has been suggested as a
343	suitable metric for comparative analyses and H_s has been used for such purposes in a few such
344	analyses. We think the overall conclusions of these analyses are valid whenever the same sampling
345	protocol was used across species (e.g., Pollard & Blumstein, 2011).
346	Multivariate identity metrics. Discrimination score (DS) is by far the most used acoustic
347	identity metric, despite numerous studies showing systematic biases in DS (e.g., Beecher, 1989; Bee,
348	Kozich, Blackwell, & Gerhardt, 2001; Budka, Wojas, & Osiejuk, 2015; Linhart & Šálek, 2017). We
349	conclude that Beecher's information statistic (H_s) (Beecher, 1989) is the best of the several
350	alternative metrics proposed. In addition to H_s , two other metrics – H_M and MI – were introduced to
351	overcome biases of discrimination scores. We did not find that H_{M} or MI were better suited than $H_{\text{s}}.$
352	Unfortunately, performance of neither of H_M or MI was directly compared, nor was either shown to
353	exceed the performance of H_s (Searby & Jouventin, 2004; Mathevon et al., 2010) despite the fact
354	that both are grounded in information theory and use the same measurement unit (bits) as H_{s} . The
355	robustness of H_M towards sampling reported here (number of individuals, number of calls, even
356	number of variables and covariance) could be seen as attractive. However, as we show, ${\sf H}_{\sf M}$ quantifies
357	identity information per variable and not the identity information of the entire signal. If one is
358	interested in total identity information, with H_M , it is necessary to know the effective number of
359	variables (i.e., if there is perfect covariance between the variables, the effective number of variables
360	is 1 no matter how many variables are used), which can be difficult in real situations. Mutual
361	information (MI) is derived from confusion matrix of discrimination analysis and we show it has

similar shortcomings as discrimination scores. Our results showing biases in MI are in line with
previous studies that investigated measures of clustering for various machine learning purposes
where potentially unbiased variants of MI are searched for (Marrelec, Messé, & Bellec, 2015; Amelio
& Pizzuti, 2017).

Although we suggest that H_s should be generally used to quantify individuality, some questions on identity signaling might still need to rely on the other identity metrics or approaches. For example, researchers might be interested in whether distinctiveness of individuals increases during ontogeny (Briefer & McElligott 2012, Lapshina et al., 2012, Syrová et al., 2017). In such cases, assessment on individual level is required (distances, discrimination score) while H_s would only provide overall identity information for each ontogeny stage making further statistical assessment impossible.

373 **Precision of conversion between metrics.** Both H_s and H_M values were previously found to 374 correlate well with DS (Beecher, 1989; Searby & Jouventin, 2004). We extend these previous findings 375 on H_s (Beecher, 1989) to situations with unequal sampling and we show it is possible to convert 376 between H_s and DS with an acceptable amount of error even when datasets differ in the number of 377 individuals and calls per individual. Predicting DS from H_s has an advantage of being more precise 378 than predicting H_s from DS. The precision of conversion decreased in real datasets compared to 379 simulated datasets. However, the decrease was not dramatic, especially when considering that the 380 conversion model was derived from simulated datasets with only two uncorrelated variables while 381 real datasets differed in both the number of variables and their covariance structure. Furthermore, 382 real datasets had issues associated with multivariate normality, which is a common problem of many 383 studies and which also likely worsened the conversion precision and metric consistency.

Identity metrics in comparative analyses. Despite the systematic biases related to sample
 size in DS (the most often used metric) and in H_s (the best metric), we show that these biases, while
 introducing certain level of noise, may not be fatal to those who desire to compare identity between

individuals or species because our H_s and DS values based on an entire population or subsamples
 from these populations were well correlated for both simulated and empirical datasets.

389 **Sample size considerations.** Biases of both DS and H_s decrease with increasing sample sizes. 390 Researchers using DS as an identity metric have been warned about the problems with low sample 391 sizes. However, these concerns were generally related to the number of observations per group 392 (typically, calls per individual) (Mundry & Sommer, 2007). Indeed, it has also been frequently pointed 393 out that PCA is sensitive to sample sizes. However, the sample size recommendations typically relate 394 to the total sample size (e.g., McGarigal, Cushman, & Stafford, 2000), while applying PCA to identity 395 research is somewhat special and assumes that principle components reflect the variation between 396 individuals. Our study suggests that number of individuals should always be at least as large as 397 number of variables whenever PCA is used to study individual identity.

398 Using identity metrics across modalities. We evaluated the efficacy of all metrics within the 399 acoustic modality only. It is increasingly recognized that signals may employ multiple modalities 400 (Partan & Marler, 1999; Proops, McComb, & Reby, 2009; Pitcher, Briefer, Baciadonna, & McElligott, 401 2017). There is no reason to believe that modality constrains the use of these metrics and, in 402 principle, all of the identity metrics could be used in visual or chemical domains as well (Beecher, 403 1982; Beecher, 1989; Kondo & Izawa, 2014). However, identity information outside the acoustic 404 domain is rarely guantified with the metrics described here because they all require assessment of a 405 signal's within individual variation. The reasons might be that other modalities are assumed to be 406 more static or because of technical difficulties in quantifying within-individual variation. The latter 407 seems to be a case. The latest progress in machine learning and image analysis suggests that it 408 should be possible to conduct individual discrimination tasks in a similar way to that used for acoustic 409 signals (Allen & Higham, 2015; Van Belleghem et al., 2018). Finally, repeated sampling of individual 410 signatures in olfactory secretions is becoming more common (Kean et al., 2015; Deshpande, Furton,

- 411 & Mills, 2018). Thus, researchers may try to quantify potential individual identity information in
- 412 visual and chemical signals in future studies.

413	Conclusion. We have shown that H_s is the identity metric with the best performance in both
414	univariate and multivariate contexts. Given that H_s may not be sufficient in all cases, we encourage
415	further research to develop new metrics to quantify identity information in signals. However, new
416	metrics should always be appropriately assessed and their performance directly compared to the
417	best existing metrics. The datasets and algorithms we have provided should aid in future
418	comparisons.

419 Acknowledgements

- 420 PL received funding from the European Union's Horizon 2020 research and innovation programme
- 421 under the Marie Skłodowska-Curie grant agreement No. 665778 administered by the National
- 422 Science Centre, Poland (UMO-2015/19/P/NZ8/02507). DTB is supported by the NSF. MŠp, MS, and RP
- 423 were supported by Czech Science Foundation (GA14-27925S) and Czech Ministry of Agriculture (MZE-
- 424 RO0718). MŠá work was supported by the research aim of the Czech Academy of Sciences (RVO
- 425 68081766).

426 Data Accessibility statement

- 427 Data and code used for this article are available at GitHub and ZENODO public repositories under
- 428 permissive free software MIT license (Linhart 2018).

429 **References**

- 430 Allen, W. L., & Higham, J. P. (2015). Assessing the potential information content of multicomponent
- 431 visual signals: a machine learning approach. *Proceedings of the Royal Society B-Biological*
- 432 *Sciences*, *282*(1802), 20142284. doi:10.1098/rspb.2014.2284
- 433 Amelio, A., & Pizzuti, C. (2017). Correction for closeness: Adjusting normalized mutual information
- 434 measure for clustering comparison. *Computational Intelligence*, *33*(3), 579–601.
- 435 doi:10.1111/coin.12100

- 436 Bee, M. A., Kozich, C. E., Blackwell, K. J., & Gerhardt, H. C. (2001). Individual variation in
- 437 advertisement calls of territorial male green frogs, *Rana clamitans*: Implications for individual
- 438 discrimination. *Ethology*, *107*, 65–84. doi:10.1046/j.1439-0310.2001.00640.x
- 439 Beecher, M. D. (1982). Signature systems and kin recognition. *American Zoologist*, 22(3), 477–490.
- 440 Beecher, M. D., Medvin, M. B., Stoddard, P. K., & Loesche, P. (1986). Acoustic adaptations for parent-
- 441 offspring recognition in swallows. *Experimental Biology*, 45, 179–193.
- 442 Beecher, M. D. (1989). Signaling systems for individual recognition an information-theory approach.
- 443 Animal Behaviour, 38, 248–261. doi:10.1016/S0003-3472(89)80087-9
- 444 Blumstein, D. T., Mennill, D. J., Clemins, P., Girod, L., Yao, K., Patricelli, G., ... Kirschel, A. N. G. (2011).
- 445 Acoustic monitoring in terrestrial environments using microphone arrays: applications,
- technological considerations and prospectus. *Journal of Applied Ecology*, 48(3), 758–767.
- 447 doi:10.1111/j.1365-2664.2011.01993.x
- 448 Bradbury, J. W., & Vehrencamp, S. L. (1998). Principles of animal communication (1st ed.).
- 449 Sunderland, MA: Sinauer Associates.
- 450 Briefer, E. F., & McElligott, A. G. (2012). Social effects on vocal ontogeny in an ungulate, the goat,

451 *Capra hircus. Animal Behaviour*, 83(4), 991–1000. doi:10.1016/j.anbehav.2012.01.020

- 452 Budka, M., & Osiejuk, T. S. (2013). Formant frequencies are acoustic cues to caller discrimination and
- 453 are a weak indicator of the body size of corncrake males. *Ethology*, *119*, 960–969.
- 454 doi:10.1111/eth.12141
- Budka, M., Wojas, L., & Osiejuk, T. S. (2015). Is it possible to acoustically identify individuals within a
 population? *Journal of Ornithology*, *156*, 481–488. doi:10.1007/s10336-014-1149-2
- 457 Carter, G. G., Logsdon, R., Arnold, B. D., Menchaca, A., & Medellin, R. A. (2012). Adult vampire bats
- 458 produce contact calls when isolated: Acoustic variation by species, population, colony, and
- 459 individual. *Plos One*, 7. doi:10.1371/journal.pone.0038791

- 460 Charrier, I., Aubin, T., & Mathevon, N. (2010). Mother-calf vocal communication in Atlantic walrus: a
- 461 first field experimental study. Animal Cognition, 13, 471–482. doi:10.1007/s10071-009-0298-
- 462

- 463 Couchoux, C., & Dabelsteen, T. (2015). Acoustic cues to individual identity in the rattle calls of
- 464 common blackbirds: a potential for individual recognition through multi-syllabic vocalisations
- 465 emitted in both territorial and alarm contexts. *Behaviour*, *152*(1), 57–82.
- 466 doi:10.1163/1568539X-00003232
- 467 Crowley, P. H., Provencher, L., Sloane, S., Dugatkin, L. A., Spohn, B., Rogers, L., & Alfieri, M. (1996).
- 468 Evolving cooperation: the role of individual recognition. *Biosystems*, *37*(1), 49–66.
- 469 doi:10.1016/0303-2647(95)01546-9
- 470 Deshpande, K., Furton, K. G., & Mills, D. E. K. (2018). The Equine volatilome: Volatile organic
- 471 compounds as discriminatory markers. *Journal of Equine Veterinary Science*, 62, 47–53.
- 472 doi:10.1016/j.jevs.2017.05.013
- 473 Godard, R. (1991). Long-term memory of individual neighbors in a migratory songbird. *Nature*,
- 474 *350*(6315), 228–229.
- 475 Hafner, G. W., Hamilton, C. L., Steiner, W. W., Thompson, T. J., & Winn, H. E. (1979). Signature
- 476 information in the song of the humpback whale. *Journal of the Acoustical Society of America*,
- 477 *66*, 1–6. doi:10.1121/1.383072
- 478 Hutchison, R. E., Stevenson, J. G., & Thorpe, W. H. (1968). The basis for individual recognition by
 479 voice in the Sandwich tern (*Sterna sandvicensis*). *Behaviour*, *32*(1/3), 150–157.
- 480 Insley, S. J., Phillips, A., & Charrier, I. (2003). A review of social recognition in pinnipeds. *Aquatic*481 *Mammals*, 29, 181–201.
- 482 Kean, E. F., Chadwick, E. A., & Müller, C. T. (2015). Scent signals individual identity and country of
- 483 origin in otters. *Mammalian Biology Zeitschrift Für Säugetierkunde*, 80(2), 99–105.
- 484 doi:10.1016/j.mambio.2014.12.004

- 485 Kondo, N., & Izawa, E. (2014). Individual differences in facial configuration in large-billed crows. Acta
- 486 *Ethologica*, *17*(1), 37–45. doi:10.1007/s10211-013-0156-2
- 487 Korkmaz, S., Goksuluk, D., & Zararsiz, G. (2014). MVN: An R package for assessing multivariate
- 488 normality. *The R Journal*, *6*(2), 151–162.
- 489 Lapshina, E. N., Volodin, I. A., Volodina, E. V., Frey, R., Efremova, K. O., & Soldatova, N. V. (2012). The
- 490 ontogeny of acoustic individuality in the nasal calls of captive goitred gazelles, Gazella

491 subgutturosa. Behavioural Processes, 90, 323–330. doi:10.1016/j.beproc.2012.03.011

- 492 Lein, M. R. (2008). Song variation in Buff-breasted Flycatchers (Empidonax fulvifrons). Wilson Journal
- 493 *of Ornithology*, *120*, 256–267. doi:10.1676/07-067.1
- 494 Lengagne, T., Lauga, J., & Jouventin, P. (1997). A method of independent time and frequency
- 495 decomposition of bioacoustic signals: inter-individual recognition in four species of penguins.
- 496 Comptes Rendus De L Academie Des Sciences Serie lii-Sciences De La Vie-Life Sciences, 320,
- 497 885-891. doi:10.1016/s0764-4469(97)80873-6
- 498 Linhart, P. (2018). pygmy83/Identity-metrics: Identity metrics. Zenodo. doi:10.5281/zenodo.1252271
- 499 Linhart, P., & Šálek, M. (2017). The assessment of biases in the acoustic discrimination of individuals.
- 500 *PLOS ONE*, *12*(5), e0177206. doi:10.1371/journal.pone.0177206
- 501 Marrelec, G., Messé, A., & Bellec, P. (2015). A bayesian alternative to mutual Information for the
- 502 hierarchical clustering of dependent random variables. *PLoS ONE*, *10*(9).
- 503 doi:10.1371/journal.pone.0137278
- 504 Mathevon, N., Koralek, A., Weldele, M., Glickman, S. E., & Theunissen, F. E. (2010). What the hyena's
- 505 laugh tells: Sex, age, dominance and individual signature in the giggling call of *Crocuta*
- 506 *crocuta*. *BMC Ecology*, *10*, 9-Article No.: 9. doi:10.1186/1472-6785-10-9
- 507 McGarigal, K., Cushman, S., & Stafford, S. (2000). Multivariate Statistics for Wildlife and Ecology
- 508 *Research*. New York: Springer-Verlag.

- 509 Mielke, A., & Zuberbuehler, K. (2013). A method for automated individual, species and call type
- 510 recognition in free-ranging animals. *Animal Behaviour*, *86*(2), 475–482.
- 511 doi:10.1016/j.anbehav.2013.04.017
- 512 Miller, D. B. (1978). Species-typical and individually distinctive acoustic features of crow calls of red
- 513 jungle fowl. Zeitschrift Fur Tierpsychologie-Journal of Comparative Ethology, 47, 182–193.
- 514 Mundry, R., & Sommer, C. (2007). Discriminant function analysis with nonindependent data:
- 515 consequences and an alternative. *Animal Behaviour*, 74(4), 965–976.
- 516 doi:10.1016/j.anbehav.2006.12.028
- 517 Partan, S., & Marler, P. (1999). Communication goes multimodal. *Science*, 283(5406), 1272–1273.
- 518 doi:10.1126/science.283.5406.1272
- 519 Pitcher, B. J., Briefer, E. F., Baciadonna, L., & McElligott, A. G. (2017). Cross-modal recognition of
- 520 familiar conspecifics in goats. *Royal Society Open Science*, 4(2), 160346.
- 521 doi:10.1098/rsos.160346
- 522 Pollard, K. A., & Blumstein, D. T. (2011). Social group size predicts the evolution of individuality.

523 *Current Biology*, *21*(5), 413–417. doi:10.1016/j.cub.2011.01.051

- 524 Pollard, K. A., Blumstein, D. T., & Griffin, S. C. (2010). Pre-screening acoustic and other natural
- 525 signatures for use in noninvasive individual identification. Journal of Applied Ecology, 47(5),
- 526 1103–1109. doi:10.1111/j.1365-2664.2010.01851.x
- 527 Proops, L., McComb, K., & Reby, D. (2009). Cross-modal individual recognition in domestic horses

528 (Equus caballus). Proceedings of the National Academy of Sciences, 106(3), 947–951.

- 529 doi:10.1073/pnas.0809127105
- 530 R Core Team. (2012). R: A language and environment for statistical computing. Vienna, Austria: R
- 531 Foundation for Statistical Computing. Retrieved from http://www.R-project.org/
- 532 Robisson, P., Aubin, T., & Bremond, J. (1993). Individuality in the voice of the Emperor penguin
- 533 Aptenodytes forsteri Adaptation to a noisy environment. Ethology, 94(4), 279–290.

- 534 Schneiderová, I. (2012). Frequency-modulated second elements of two-element alarm calls do not
- enhance discrimination of callers in three Eurasian ground squirrels. *Current Zoology*, *58*(5),
 749–757.
- 537 Searby, A., & Jouventin, P. (2004). How to measure information carried by a modulated vocal
- 538 signature? Journal of the Acoustical Society of America, 116, 3192–3198.
- 539 doi:10.1121/1.1775271
- 540 Sousa-Lima, R. S., Paglia, A. P., & da Fonseca, G. A. B. (2008). Gender, age, and identity in the
- 541 isolation calls of Antillean manatees (*Trichechus manatus manatus*). Aquatic Mammals, 34,
- 542 109–122. doi:10.1578/am.34.1.2008.109
- 543 Syrová, M., Policht, R., Linhart, P., & Špinka, M. (2017). Ontogeny of individual and litter identity
- signaling in grunts of piglets. *The Journal of the Acoustical Society of America*, 142(5), 3116–
- 545 3121. doi:10.1121/1.5010330
- 546 Terry, A. M. R., & McGregor, P. K. (2002). Census and monitoring based on individually identifiable

547 vocalizations: the role of neural networks. *Animal Conservation*, *5*, 103–111.

- 548 doi:10.1017/s1367943002002147
- 549 Tibbetts, E. A. (2004). Complex social behaviour can select for variability in visual features: a case
- 550 study in Polistes wasps. Proceedings of the Royal Society of London B: Biological Sciences,
- 551 271(1551), 1955–1960. doi:10.1098/rspb.2004.2784
- 552 Tibbetts, E., & Dale, J. (2007). Individual recognition: it is good to be different. *Trends in Ecology & Evolution*, 22(10), 529–537. doi:10.1016/j.tree.2007.09.001
- 554 Tripovich, J. S., Rogers, T. L., Canfield, R., & Arnould, J. P. Y. (2006). Individual variation in the pup
- attraction call produced by female Australian fur seals during early lactation. *Journal of the*
- 556 Acoustical Society of America, 120(1), 502–509. doi:10.1121/1.2202864
- 557 Van Belleghem, S. M., Papa, R., Ortiz-Zuazaga, H., Hendrickx, F., Jiggins, C. D., Owen McMillan, W., &
- 558 Counterman, B. A. (2018). patternize: An R package for quantifying colour pattern variation.
- 559 *Methods in Ecology and Evolution*, *9*(2), 390–398. doi:10.1111/2041-210X.12853

- 560 Venables, W. N., & Ripley, B. D. (2002). *Modern Applied Statistics with S* (Fourth). New York: Springer.
- 561 Retrieved from http://www.stats.ox.ac.uk/pub/MASS4
- 562 Wiley, R. H. (2013). Specificity and multiplicity in the recognition of individuals: implications for the
- 563 evolution of social behaviour. *Biological Reviews*, 88(1), 179–195. doi:10.1111/j.1469-
- 564 185X.2012.00246.x
- 565 Wilkinson, G. S. (1984). Reciprocal food sharing in the vampire bat. *Nature*, *308*(5955), 181–184.
- 566 doi:10.1038/308181a0
- 567