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Abstract 26 

1. Identity signals have been studied for over 50 years but there is no consensus as to how to 27 

quantify individuality. While there are a variety of different metrics to quantify individual 28 

identity, or individuality, these methods remain un-validated and the relationships between 29 

them unclear.  30 

2. We contrasted three univariate and four multivariate metrics (and their different 31 

computational variants) and evaluated their performance on simulated and empirical 32 

datasets.  33 

3. Of the metrics examined, Beecher’s information statistic (HS) was the best one and could 34 

easily and reliably be converted into the commonly used discrimination score (and vice 35 

versa) after accounting for the number of individuals and calls per individual in a given 36 

dataset. Although Beecher’s information statistic is not entirely independent of sampling 37 

parameters, this problem can be removed by reducing the number of parameters or by 38 

increasing the number of individuals. 39 

4. Because it is easily calculated, has superior performance, can be used to describe single 40 

variables or signal as a whole, and because it tells us the maximum number of individuals 41 

that can be discriminated given a set of measurements, we recommend that individuality 42 

should be quantified using Beecher’s information statistic.  43 

Keywords: Individual recognition, Social behavior, Identity signal, Beecher’s Information Statistic, 44 

Acoustic identification, Acoustic discrimination, Vocal individuality, Discriminant analysis 45 
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Introduction 47 

The fact that conspecific individuals differ in consistent ways underlies a number of theoretically 48 

important questions in biology such as explaining cooperative behavior or understanding the 49 

evolution of sociality (Crowley et al., 1996; Bradbury & Vehrencamp, 1998; Tibbetts, 2004). Because 50 

it may be advantageous for animals to choose with whom they interact or respond to (Wilkinson, 51 

1984; Godard, 1991), there may be selection both to produce individually-distinctive signals and to 52 

discriminate among them (Tibbetts & Dale, 2007; Wiley, 2013). Individually-distinctive traits can also 53 

be used to help wildlife population censuses or to monitor individuals (Terry & McGregor, 2002; 54 

Blumstein et al., 2011). For these purposes, identity information in animal signals has been quantified 55 

by several different univariate and multivariate metrics, especially in the acoustic domain (Miller, 56 

1978; Hafner, Hamilton, Steiner, Thompson, & Winn, 1979; Beecher, 1989; Searby & Jouventin, 2004; 57 

Mathevon, Koralek, Weldele, Glickman, & Theunissen, 2010).  58 

For identity signals to function properly, they should maximize the between-individual variation 59 

and minimize the within-individual variation. Therefore, to quantify an individual’s identity we 60 

require repeated measurements of one or more traits on a given set of individuals within a 61 

population. This is well acknowledged in the study of acoustic signals (e.g., Hutchison, Stevenson, & 62 

Thorpe, 1968; Beecher, 1989; Robisson, Aubin, & Bremond, 1993). A typical study of acoustic identity 63 

signaling would record large number of vocalizations from each individual under different conditions 64 

(different time intervals, distances, etc.), measure a set of acoustic traits (e.g., fundamental 65 

frequency, duration, formant structure, frequency modulation, etc.), and then calculate the 66 

individual identity either directly through comparing between and within individual variation, or 67 

indirectly  through discrimination between individuals. In studies of chemical or visual signals, robust 68 

assessment of within-individual variation by having many replicates from a single individual remains 69 

uncommon (Kondo & Izawa, 2014; but see, e.g., Kean, Chadwick, & Müller, 2015) although 70 

quantification of individual identity might be expected in future studies.  71 
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A variety of identity metrics have proliferated because the existing metrics were considered 72 

biased (Beecher, 1989; Mathevon et al., 2010)  or unsuitable for a particular signal type (Searby & 73 

Jouventin, 2004). Furthermore, different equations have been sometimes used to calculate the same 74 

identity metric (Beecher, 1989; Lein, 2008; Charrier, Aubin, & Mathevon, 2010; Linhart & Šálek, 75 

2017). Thus there is no consensus about how to properly measure identity. As a result, researchers 76 

have generally avoided quantitative comparisons between studies (Insley, Phillips, & Charrier, 2003), 77 

although there have been a few of using exactly the same methods for several different species 78 

(Beecher, Medvin, Stoddard, & Loesche, 1986; Lengagne, Lauga, & Jouventin, 1997; Pollard & 79 

Blumstein, 2011). The lack of a commonly used identity metric is a major impediment toward 80 

understanding the evolution of identity signaling and indeed, the evolution of individuality.  81 

Here we review previously developed univariate and multivariate metrics that have been used to 82 

quantify individual identity information in signals and we test their performance on simulated and 83 

empirical datasets. In particular, we investigated the following metrics: F-value, Potential of 84 

individual coding PIC, Beecher’s information statistic HS, Efficiency of modulated signature HM, and 85 

Mutual information MI. We further evaluated different computational variants found in literature in 86 

case of PIC and HS (see Methods and Supplement 1 for a detail overview of metrics and their 87 

variants). 88 

We compare the performance of metrics to a hypothetical ideal identity information metric. We 89 

propose that ideal identity metric should have two basic characteristics: 1) it should not be 90 

systematically biased by study design (no systematic effects of number of individuals in a study and 91 

number of calls per individual in a study); and 2) in the multivariate case (i.e., when it is used to 92 

quantify individuality based on measurements of multiple signal features), it should rise with number 93 

of meaningful parameters and decrease with covariance between them. Also, for both univariate and 94 

multivariate case, we expect the metric will have a meaningful zero in case there is no identity 95 

content in a signal. Finally, we expect no upper limit on the degree of individuality; in theory, and 96 
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given sufficient variation and variables, one could discriminate among an infinite number of 97 

individuals. We also wished to see if each of two commonly used metrics (Beecher’s information 98 

statistic HS, and discrimination score DS) could be converted to the other metric to facilitate 99 

comparative analyses of the evolution of individuality. 100 

Material and methods 101 

We used R for simulations and statistical analysis (R Core Team, 2012). Our simulated and empirical 102 

data along with analysis scripts are available on GitHub (Linhart, 2018).  103 

Datasets 104 

Simulated datasets. We constructed datasets with univariate and multivariate normal distributions 105 

with parameters covering wide range of values – individuality (id = 0.01, 1, 2.5, 5, 10), number of 106 

observations / calls per individual (o = 4, 8, 12, 16, 20), number of individuals (i = 5, 10, 15, 20, 25, 30, 107 

35, 40), and, for multivariate datasets, the covariance among variables (cov = 0, 0.25, 0.5, 0.75, 1) 108 

and the number of variables (p = 2, 4, 6, 8, 10). Individuality (id) represents ratio of standard 109 

deviations between and within individuals (id = SDbetween / SDwithin; SDbetween was calculated from 110 

means for each individual). A single covariance (cov) value was used in the variance-covariance 111 

matrix to define covariances between all pairs of variables (detailed description in Supplement 2). 112 

We asked how dataset parameters (i, o, p, cov, id) influenced the value of each identity metric. To 113 

explore this, all combinations of dataset parameters were exhaustively sampled with 20 iterations on 114 

each unique combination of parameters. In each iteration, a new dataset was generated to ensure 115 

independence between samples. We developed R scripts involving “rnorm” and MASS package 116 

(Venables & Ripley, 2002) “mvrnorm” function to generate the datasets. 117 
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118 

Figure 1. Illustration of three artificial multivariate datasets that differ only in the individuality used 119 

to generate datasets. Settings for the function generating these datasets: i = 5, o = 10, p = 2, cov = 0, 120 

id = 0.01, 3, and 10 121 

Empirical datasets. We used six datasets from four different species: little owls Athene noctua 122 

(ANmodulation, ANspec) (Linhart & Šálek, 2017), corncrake Crex crex (CCformants, CCspec) (Budka & 123 

Osiejuk, 2013), yellow-breasted boubous Laniarius atroflavus (LAhighweewoo) (Osiejuk et al. 124 

unpublished data), and domestic pigs Sus scrofa (SSgrunts) (Syrová, Policht, Linhart, & Špinka, 2017) 125 

(Figure 2). In two species – corncrakes and little owls – calls were described by two different sets of 126 

variables. In little owls, we described calls by frequency modulation (ANmodulation) or parameters 127 

describing the distribution of the frequency spectrum (ANspec). In corncrakes, we used formants 128 

(CCformants) and parameters describing the distribution of the frequency spectrum (CCspec). 129 

Because datasets varied with respect to the number of individuals (33 – 100) and the number of calls 130 

per individual available (10 – 20), we scaled all datasets down to lowest common denominator by 131 

randomly selecting individuals and calls from bigger datasets. Eventually, each dataset had 33 132 

individuals and 10 calls per individual. Each dataset also used different numbers of variables to 133 

describe the calls’ acoustic structure (ANmodulation = 11, ANspec = 7, CCformants = 4, CCspec = 7, 134 

LAhighweewoo = 7, SS grunty = 10). In all these empirical datasets, assumptions of multivariate 135 

normality were tested (Korkmaz, Goksuluk, & Zararsiz, 2014), but not met. This issue is common for 136 

research studies on acoustic individual identity. Authors deal with it by eliminating problematic 137 

variables (e.g., Sousa-Lima, Paglia, & da Fonseca, 2008; Couchoux & Dabelsteen, 2015), using non-138 
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parametric classification methods (e.g., Tripovich, Rogers, Canfield, & Arnould, 2006; Mielke & 139 

Zuberbuehler, 2013), or by relying on robustness of cross-validated DFA towards relaxed 140 

assumptions (e.g., Mathevon et al., 2010; Schneiderová, 2012). We used the last approach. If the 141 

assumptions of discriminant analysis are not met the results should be less stable when using 142 

different sampling and hence our results should be conservative. 143 

 144 

Figure 2. Illustration of empirical datasets. Five individuals were randomly sampled from each 145 

dataset of 33 individuals and all 10 calls per individual were selected. HS for a full dataset is shown. 146 

Data were centered and scaled and subjected to PCA. The first two Principal Components are 147 

plotted.  148 

R functions to calculate individuality metrics 149 

The following scripts were used to calculate seven variants of three univariate metrics: F value 150 

(calcF), Potential of individual coding PIC (calcPICbetweentot, calcPICbetweenmeans), and Beecher’s 151 

information statistic (calcHSntot, calcHSnpergroup, calcHSngroups, calcHSvarcomp). PIC is defined as 152 

a ratio of between-individual to within-individual coefficients of variation (e.g., Robisson et al., 1993; 153 

Lengagne et al., 1997):  154 
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  (1) 

Two variants of PIC differ in whether CVb in the formula is calculated from all values (PICbetweentot) 155 

(e.g., Charrier et al., 2010), or means for each individual are calculated first and CVb is then calculated 156 

from these means (PICbetweenmeans) (e.g., Lein, 2008). HS is based on F-value but unlike F-value, HS 157 

accounts for sample size: 158 

 �� � �	
�
�� 
 � � 1�  

(2) 

The source of confusion is the ’n’ in the formula. Total sample size (HSntot), number of groups (i.e., 159 

individuals) (HSngroups), and number of samples per group (HSnpergroup) could all be used as ‘n’ in this 160 

equation. Some studies explicitly state they used number of individuals as ‘n’ (e.g., Pollard, 161 

Blumstein, & Griffin, 2010; Linhart & Šálek, 2017), but the properties of HS values in these studies did 162 

not match the properties suggested in the original article by Beecher (1989). Yet another approach to 163 

calculate HS is to extract the variance component estimates and use the total (VT) and the residual 164 

variance (VW, associated with random factor) to calculate HS (HSvarcomp) (Beecher, 1989; Carter, 165 

Logsdon, Arnold, Menchaca, & Medellin, 2012): 166 

 �� � �	
�

����

 (3) 

     167 

The following scripts were used to calculate multivariate metrics: calcDS, calcHSnpergroup, 168 

calcHM, calcMI. The calcDS is based on ‘lda’ (‘MASS’ package). The calcMI function uses ‘lda’ (‘MASS’ 169 

package) and ‘mutinformation’ (‘infotheo’ package).  170 

Multivariate identity metrics were always calculated from data (simulated or empirical) that 171 

were centered to have a mean of zero, scaled to unit variance, and subjected to principal component 172 

analysis. 173 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/546143doi: bioRxiv preprint first posted online Feb. 10, 2019; 

http://dx.doi.org/10.1101/546143


 9

Statistical analysis 174 

Our goal was to ask whether there are systematic biases for each identity metric given different 175 

parameters that reflect sampling design. The relationship between a given identity metric and each 176 

of the parameters was assessed graphically by plotting the mean value and the 95% confidence 177 

intervals of an identity metric against all of the modelled data parameters separately. We then used 178 

a one-way ANOVA to test whether an identity metric was constant across all levels of a parameter. If 179 

we found significant differences, we followed up these with post-hoc Tukey tests to identify which 180 

parameter levels differed. Due to high number of comparisons, we only reported comparisons of 181 

neighboring parameter levels. We used linear and non-parametric loess regression to convert HS to 182 

DS and vice versa. Loess regression included the number of individuals and number of calls per 183 

individual as additional predictors. We used Spearman correlation coefficients to quantify between-184 

metric consistency of ranking individuality in datasets. Pearson correlations were used to assess 185 

consistency within identity metrics in full and partial datasets. We then used Friedman test, followed 186 

by a series of Wilcoxon tests (for post-hoc comparison of differences between levels), to compare 187 

correlation coefficients obtained for each pair of the metrics.  188 

  189 
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Results 190 

The comparison of available univariate and multivariate metrics to an ideal metric is shown in Table 191 

1. 192 

    zero limit id cov p o i points 

Univariate Metrics: 

       
ideal y n  + 

  
ns ns  5/5 

F y n  + 
  

+ ns  4/5 

PICbetweentot n n  + 
  

ns ns  4/5 

PICbetweenmeans n n  + 
  

ns ns  4/5 

HSntot y n  + 
  

ns  -  4/5 

HSnpergroup y n  + 
  

ns ns  5/5 

HSngroups y n  + 
  

+  -  3/5 

HSvarcomp y n  + 
  

ns ns  5/5 

        
Multivariate Metrics: 

       
ideal y n  +  -  + ns ns  7/7 

DS y y  +   -   +   +   -   4/7 

HS y n  +   -   +  ns   +   6/7 

HM y n  +  ns ns  ns  ns  5/7 

MI n y  +   -   +   -   +   3/7 

 193 

 194 

Table 1. The comparison of available univariate and multivariate metrics to a hypothetical ideal 195 

metric. We summed the number of matches (points) to compare different metrics to the ideal 196 

metric. Non-matching cells are highlighted in grey background. ‘zero’ – metric has a meaningful zero; 197 

‘limit’ – metric is limited from the top by an asymptote; ‘id’ – change in response to increasing 198 
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identity information in data; ‘cov’ – response to increasing covariance between variables; ‘p’ – 199 

response to increasing number of variables; ‘o’ – response to increasing number of calls per 200 

individual; ‘i’ – response to increasing number of individuals; ‘y’- yes; ‘n’ – no; ‘+’ – increase; ‘-‘ – 201 

decrease; ‘ns’ – not significant, does not change with a parameter. 202 

Univariate metrics 203 

Univariate metrics: F, PIC variants (PICbetweentot, PICbetweenmeans), HS variants (HSntot, HSnpergroup, HSngroups, 204 

HSvarcomp). 205 

All explored univariate metrics increased with increasing individuality in the data. However, only 206 

PICbetweentot, PICbetweenmeans, HSnpergroup and HSvarcomp estimates were independent of the number of calls 207 

and the number of individuals used to calculate the metric (Figure 3). These general patterns were 208 

qualitatively identical when all results were pooled or if only one of the parameters (number of calls, 209 

number of individuals, individuality) was changed at a time and the others were kept constant at the 210 

middle value (see Supplement 3 for detailed results including ANOVA tests).  211 

All four sampling-independent metrics (PICbetweentot, PICbetweenmeans, HSnpergroup and HSvarcomp) were 212 

highly correlated (Spearman correlation, all r > 0.99). HSnpergroup and HSvarcomp correctly converged to 0 213 

in the case when individuality was set to be negligible (id = 0.01), while PICbetweentot and PICbetweenmeans 214 

converged to higher values (1.01 and 0.32 respectively). HSvarcomp was equal to 2 * HSnpergroup (see 215 

Supplement 4 for details). We further considered only the HSnpergroup in multivariate analyses. 216 

Overall, HS performed best and best matched the characteristics of an ideal metric (Table 1). 217 
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Figure 3. Variation in univariate identity metrics in response to artificial dataset parameters: 219 

individuality, number of calls per individual, and number of individuals. Means and 95% confidence 220 

intervals are shown. Graphs were plotted using all data pooled together.  221 

Multivariate metrics 222 

The performance of multivariate identity metrics is illustrated in Figure 4. All metrics increased with 223 

increasing individuality. DS, HS, and MI increased with increasing number of variables available and 224 

decreased with increasing covariance between variables. Only HM did not change in response to 225 

increasing the number of individuals. HS and HM did not change in response to increasing the number 226 

of calls per individual. These general patterns were qualitatively identical when all results were 227 

pooled or if one parameter was changed at a time and others were kept constant at the middle value 228 

(see Supplement 5 for detailed results including ANOVA tests). 229 

 230 
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Figure 4. Multivariate identity metrics in response to changing individuality, covariance between 232 

variables, number of variables, number of calls per individual, and number of individuals in artificial 233 

data. Means and 95% confidence intervals are shown.  234 

Despite the different response of metrics to some of the simulated parameters, there was still 235 

moderate to high agreement among metrics about identity content in the data (Spearman 236 

correlations, mean r ± SD = 0.82 ± 0.07; minimum r = 0.71 for correlation between DS and MI; 237 

maximum r = 0.95 for correlation between DS and HS). HS had the greatest correlations with other 238 

metrics (average R = 0.88). We found no advantage to using HM over HS as previously suggested. 239 

Instead, HM was equal to HS per variable (HM = HS / p) (Supplement 6). 240 

Thus, our simulations show that HS performed best and matched the characteristics of the ideal 241 

metric in 6/7 cases, followed by HM (5/7), DS (4/7), and MI (both 3/7) (Table 1).    242 

Potential for removing bias in HS  243 

We observed no significant association between HS and the number of individuals in the univariate 244 

case so the question arose about the precise cause of the bias in the multivariate case. This bias was 245 

only present when data were subjected to Principle Components Analysis (PCA). However, PCA is 246 

required to create uncorrelated components for HS calculation. It is possible that the more variables 247 

measured, the more individuals need to be sampled in order to reduce this bias. We therefore fixed 248 

the number of variables to 5, 10, and 20 (p = 5, 10, 20) and varied the ratio of number of individuals 249 

to number of variables ‘i to p ratio’ from 0.5 to 5 (‘i to p ratio’ = 0.5, 1, 1.5, 2, 3, 5) by using different 250 

numbers of individuals in our simulations (i = 3, 5, 8, 10, 15, 20, 25, 30, 40, 50, 60, 100 depending on 251 

number of variables and “i to p ratio”). The number of calls per individual was set to 10. Individuality 252 

and covariance were both chosen randomly in each iteration from predefined intervals used in the 253 

earlier simulations (covariance range = [0, 0.25, 0.5, 0.75, 1]; individuality range = [0.01, 1, 2.5, 5, 254 

10]). We used 100 and 1000 iterations for each ‘i to p ratio’ to get less and more conservative 255 

estimates. HS did not rise significantly after the number of individuals reached at least the number of 256 

parameters in case of 100 iterations (One-way ANOVA F5, 1794 = 7.68, P < 0.001; no significant 257 
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differences between levels if ‘i to p’ ≥ 1, all p > 0.132) (Figure 5), or at least twice the number of 258 

parameters in case of 1000 iterations (one-way ANOVA F5, 17994 = 63.19, P < 0.001; no significant 259 

differences between levels if ‘i to p’ ≥ 2, all p > 0.104).    260 

 261 

Figure 5. HS and “i to p ratio” (number of individuals / number of variables) for situation with 100 262 

iterations. HS was under-estimated if there are fewer individuals than variables. Means and 95% 263 

confidence intervals are shown. 264 

Converting DS to HS and vice versa 265 

We used simple linear regression and non-parametric loess regression to estimate HS based on DS 266 

and vice versa. There was a previously suggested linear relationship that had a limit of HS = 8 where 267 

the DS values were 100% correct discrimination (Beecher 1989). Because the HS values in our original 268 

simulated datasets far exceeded 8 in many cases (maximum HS = 32.9)  , we generated a new set of 269 

simulated datasets with individuality ranging between 0.1 and 2 (id = 0.1, 0.25, 0.5, 0.75, 1, 1.33, 270 

1.66, 2), covariance set to zero (cov = 0), number of iterations was reduced to 10 (it = 10), and other 271 

parameters were set as in previous models (p = 2, 4, 6, 8, 10; i = 5, 10, 15, 20, 25, 30, 35, 40; o = 4, 8, 272 

12, 16, 20). These settings led to HS values up to 13.0 for data used for model building, and HS values 273 

up to 14.4 in the case of data used for model testing. These values are much closer to 8 and also 274 

much closer to HS values reported from nature.  275 
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Loess models took into account specific sampling of the dataset; specifically, we included as 276 

predictors the number of calls per individual and the number of individuals. We compared the loess 277 

conversion and linear conversion models of DS and HS. In general, loess estimates were closer to the 278 

ideal prediction (intercept = 0, beta = 1) and the loess model reduced error of both DS and HS 279 

estimates to about a half compared to linear estimates (Figure 6). Both HS estimates were 280 

underestimated for high values of HS. The ceiling value is clearly apparent for linear estimates of HS. It 281 

is still visible in case of loess estimates but loess predictions remain reasonably good up to about HS = 282 

10.  283 

284 
Figure 6. Estimation of HS and DS based on linear and loess transformation of DS and HS respectively 285 
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for datasets with HS up to 14.4. Linear DS estimation: Intercept = 0.07, Beta = 0,83, R2 = 0.83, 286 

Standard Error of Estimate (SEE) = 0.12, 95% Prediction interval = predicted value ± 0.23; DS loess 287 

estimation: Intercept = 0.01, Beta = 0.98, R2 = 0.97, Standard Error of Estimate (SEE) = 0.05, 95% 288 

Prediction interval = predicted value ± 0.10. Linear HS estimation: Intercept = 0.51, Beta = 0.83, R2 = 289 

0.83, Standard Error of Estimate (SEE) = 1.14, 95% Prediction interval = predicted value ± 2.24; HS 290 

loess estimation: Intercept = 0.11, Beta = 0.98, R2 = 0.95, Standard Error of Estimate (SEE) = 0.64, 291 

95% Prediction interval = predicted value ± 1.26. 292 

Correlations between calculated and estimated metrics 293 

We were further interested in how HSest and DSest might represent HS and DS of a particular sample of 294 

individuals or HSfull and DSfull of the whole population. For this purpose, we first generated 50 full 295 

datasets with different identity levels representing 50 hypothetical populations of different species. 296 

Each dataset comprised of 40 individuals, 20 calls per individual, and 10 parameters. For these 297 

datasets, individuality was set randomly ranging between 0.2 – 2 (0.1 increments), and the 298 

covariance was set randomly ranging between 0.2 – 0.8 (0.1 increments). These settings generated 299 

datasets with HSfull values that ranged from 0.22 – 9.89 (mean ± sd: 4.72 ± 2.95). Then, we repeatedly 300 

subsampled these datasets to get partial datasets which simulate different sampling of the 301 

population. We subsampled 5-40 individuals and 4-20 calls per individual per dataset in each of total 302 

20 iterations. We also repeatedly subsampled our empirical datasets. We subsampled 5-33 303 

individuals and 4-10 calls per individual per dataset in each of total 20 iterations. The number of 304 

parameters was not randomized – we always kept the original number of variables. 305 

In simulated datasets, HS and HSest were correlated almost perfectly with each other and with 306 

HSfull (all average Pearson r > 0.97). There was no difference among correlation coefficients from 307 

correlations between HSfull, HS, and HSest (Friedman Chi Square = 3.6, p = 0.165). In empirical datasets, 308 

HS calculated on partial datasets still reflected the HSfull almost perfectly (average Pearson r = 0.99). 309 

While HSest reflected HS of partial dataset (average Pearson r = 0.90), and HSfull (average Pearson r = 310 
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0.88) was slightly worse, it remained a reasonable fit. However, HSest did not reflect HSfull as precisely 311 

as it did HS (Friedman Chi Square = 33.6, p < 0.001, post-hoc test: HS - HSfull vs. HSest - HSfull, p < 0.001). 312 

DS in simulated datasets, was almost perfectly correlated with DSest (average Pearson r = 0.99). 313 

Although the relationship between DS and DSest was significantly worse in a full dataset (DSfull) 314 

(Friedman Chi Square = 40.0, p < 0.001; both post-hoc tests: p < 0.005), these associations remained 315 

strong (DSfull and DS: average Pearson r = 0.95; DSfull and DSest: average Pearson r = 0.96). In empirical 316 

datasets, the correlation between DS and DSest was lower than in case of artificial datasets (average 317 

Pearson r = 0.91). DS and DSest of partial datasets had comparable correlations to DSfull ( DSfull and DS: 318 

average Pearson r = 0.88; DSfull and DSest: average Pearson r = 0.86). Thus, the performance of DS and 319 

DSest to reflect each other or DSfull did not differ (Friedman Chi Squre = 0.9, p = 0.638). 320 

Discussion 321 

All identity metrics had systematic biases that emerged from sampling decisions. Biases induced by 322 

the number of individuals and the number of calls per individual in a sample both decreased with 323 

improving sampling. HS was closest to an ideal identity metric in the univariate case when identity 324 

was assessed for a single variable, as well as in multivariate case when identity was assessed for a set 325 

of several different variables. The bias caused by the number of individuals in the sample used to 326 

calculate HS could be removed by having at least the same number of individuals as the number of 327 

variables. HS was the most consistent metric and best correlated with DS and other identity metrics. 328 

HS could be converted reliably into DS and vice-versa. 329 

Univariate identity metrics. Beecher’s information statistic (HS) (Beecher et al., 1986; 330 

Beecher, 1989) and Potential for individual coding (PIC) (Robisson et al., 1993; Lengagne et al., 1997) 331 

were both suggested as unbiased alternative metrics to F values. We confirmed that both HS (when 332 

calculated properly) and PIC provide unbiased estimates of identity information. Further, we show 333 

that these two metrics are almost perfectly correlated and, hence, in general, they both measure the 334 

same thing. PIC reflects the number of potential individual signatures within a population in same 335 
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way as 2��does. However, PIC slightly differs from HS and deviates from expected zero values if there 336 

is low identity content in a signal that approaches zero. It is important to realize that variables with 337 

PICbetweentot value > 1 need not convey meaningful individual information as commonly assumed. 338 

Using the PICbetweentot does not create overly spurious conclusions but rather including more less-339 

important variables increases noise in subsequent analyses. Studies using the number of individuals 340 

as ‘n’ to calculate HS most likely under-estimates the real HS value because the number of individuals 341 

is typically higher than the number of calls per individual in those studies. HS has been suggested as a 342 

suitable metric for comparative analyses and HS has been used for such purposes in a few such 343 

analyses. We think the overall conclusions of these analyses are valid whenever the same sampling 344 

protocol was used across species (e.g., Pollard & Blumstein, 2011).  345 

Multivariate identity metrics. Discrimination score (DS) is by far the most used acoustic 346 

identity metric, despite numerous studies showing systematic biases in DS (e.g., Beecher, 1989; Bee, 347 

Kozich, Blackwell, & Gerhardt, 2001; Budka, Wojas, & Osiejuk, 2015; Linhart & Šálek, 2017). We 348 

conclude that Beecher’s information statistic (HS) (Beecher, 1989) is the best of the several 349 

alternative metrics proposed. In addition to HS, two other metrics – HM and MI – were introduced to 350 

overcome biases of discrimination scores. We did not find that HM or MI were better suited than HS. 351 

Unfortunately, performance of neither of HM or MI was directly compared, nor was  either shown to 352 

exceed the performance of HS (Searby & Jouventin, 2004; Mathevon et al., 2010) despite the fact 353 

that both are grounded in information theory and use the same measurement unit (bits) as HS. The 354 

robustness of HM towards sampling reported here (number of individuals, number of calls, even 355 

number of variables and covariance) could be seen as attractive. However, as we show, HM quantifies 356 

identity information per variable and not the identity information of the entire signal. If one is 357 

interested in total identity information, with HM, it is necessary to know the effective number of 358 

variables (i.e., if there is perfect covariance between the variables, the effective number of variables 359 

is 1 no matter how many variables are used), which can be difficult in real situations. Mutual 360 

information (MI) is derived from confusion matrix of discrimination analysis and we show it has 361 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/546143doi: bioRxiv preprint first posted online Feb. 10, 2019; 

http://dx.doi.org/10.1101/546143


 20

similar shortcomings as discrimination scores. Our results showing biases in MI are in line with 362 

previous studies that investigated measures of clustering for various machine learning purposes 363 

where potentially unbiased variants of MI are searched for (Marrelec, Messé, & Bellec, 2015; Amelio 364 

& Pizzuti, 2017).  365 

Although we suggest that HS should be generally used to quantify individuality, some 366 

questions on identity signaling might still need to rely on the other identity metrics or approaches. 367 

For example, researchers might be interested in whether distinctiveness of individuals increases 368 

during ontogeny (Briefer & McElligott 2012, Lapshina et al., 2012, Syrová et al., 2017). In such cases, 369 

assessment on individual level is required (distances, discrimination score) while HS would only 370 

provide overall identity information for each ontogeny stage making further statistical assessment 371 

impossible.  372 

Precision of conversion between metrics. Both HS and HM values were previously found to 373 

correlate well with DS (Beecher, 1989; Searby & Jouventin, 2004). We extend these previous findings 374 

on HS (Beecher, 1989) to situations with unequal sampling and we show it is possible to convert 375 

between HS and DS with an acceptable amount of error even when datasets differ in the number of 376 

individuals and calls per individual. Predicting DS from HS has an advantage of being more precise 377 

than predicting HS from DS. The precision of conversion decreased in real datasets compared to 378 

simulated datasets. However, the decrease was not dramatic, especially when considering that the 379 

conversion model was derived from simulated datasets with only two uncorrelated variables while 380 

real datasets differed in both the number of variables and their covariance structure. Furthermore, 381 

real datasets had issues associated with multivariate normality, which is a common problem of many 382 

studies and which also likely worsened the conversion precision and metric consistency.  383 

Identity metrics in comparative analyses. Despite the systematic biases related to sample 384 

size in DS (the most often used metric) and in HS (the best metric), we show that these biases, while 385 

introducing certain level of noise, may not be fatal to those who desire to compare identity between 386 
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individuals or species because our HS and DS values based on an entire population or subsamples 387 

from these populations were well correlated for both simulated and empirical datasets.  388 

Sample size considerations. Biases of both DS and HS decrease with increasing sample sizes. 389 

Researchers using DS as an identity metric have been warned about the problems with low sample 390 

sizes. However, these concerns were generally related to the number of observations per group 391 

(typically, calls per individual) (Mundry & Sommer, 2007). Indeed, it has also been frequently pointed 392 

out that PCA is sensitive to sample sizes. However, the sample size recommendations typically relate 393 

to the total sample size (e.g., McGarigal, Cushman, & Stafford, 2000), while applying PCA to identity 394 

research is somewhat special and assumes that principle components reflect the variation between 395 

individuals. Our study suggests that number of individuals should always be at least as large as 396 

number of variables whenever PCA is used to study individual identity.  397 

Using identity metrics across modalities. We evaluated the efficacy of all metrics within the 398 

acoustic modality only. It is increasingly recognized that signals may employ multiple modalities 399 

(Partan & Marler, 1999; Proops, McComb, & Reby, 2009; Pitcher, Briefer, Baciadonna, & McElligott, 400 

2017). There is no reason to believe that modality constrains the use of these metrics and, in 401 

principle, all of the identity metrics could be used in visual or chemical domains as well (Beecher, 402 

1982; Beecher, 1989; Kondo & Izawa, 2014). However, identity information outside the acoustic 403 

domain is rarely quantified with the metrics described here because they all require assessment of a 404 

signal’s within individual variation. The reasons might be that other modalities are assumed to be 405 

more static or because of technical difficulties in quantifying within-individual variation. The latter 406 

seems to be a case. The latest progress in machine learning and image analysis suggests that it 407 

should be possible to conduct individual discrimination tasks in a similar way to that used for acoustic 408 

signals (Allen & Higham, 2015; Van Belleghem et al., 2018). Finally, repeated sampling of individual 409 

signatures in olfactory secretions is becoming more common (Kean et al., 2015; Deshpande, Furton, 410 
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& Mills, 2018). Thus, researchers may try to quantify potential individual identity information in 411 

visual and chemical signals in future studies.   412 

Conclusion. We have shown that HS is the identity metric with the best performance in both 413 

univariate and multivariate contexts. Given that HS may not be sufficient in all cases, we encourage 414 

further research to develop new metrics to quantify identity information in signals. However, new 415 

metrics should always be appropriately assessed and their performance directly compared to the 416 

best existing metrics. The datasets and algorithms we have provided should aid in future 417 

comparisons. 418 
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