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Abstract
The fear of predators can lead to behavioral changes in their prey, but animals must trade off defensive behavior against other 
compelling needs. For territorial species, responding to predators may be especially costly, because defense and escape are 
mutually incompatible. A growing literature documents risk assessment in fish, but a few studies have focused on extremely 
territorial fish, and nothing is known about how territory size, territorial interactions, habitat structural complexity, and 
life stage may modify risk assessment. We studied this in a damselfish (Stegastes fuscus) on coral reefs and measured risk 
assessment using flight initiation distance (FID). We found that only structural complexity explained variation in FID; fish in 
more complex habitats tolerated closer approach. Our study suggests that individuals in relatively more structurally complex 
territories are bolder than those that occur in less complex territories. Documenting the relative importance of these vari‑
ables is important, because antipredator behavior influences not only the predator–prey relationship, but can also generate 
cascading effects, and influence the structure of the community and potentially entire ecosystems.

Introduction

Territorial species must trade off time allocated to terri‑
torial behavior with other activities that enhance their fit‑
ness (Ydenberg and Krebs 1987). Responding to predatory 
threats may, indeed, be especially costly, because by doing 
so individuals are unable to defend their territories. Thus, we 

expect the decisions about when and how to assess risk and 
respond to predators to be particularly important.

A commonly used metric to quantify risk is flight initia‑
tion distance (FID), which is minimum distance at which 
a predator approaches a prey before it escapes (Ydenberg 
and Dill 1986). FID is influenced by a variety of factors, 
such as predator lethality, group size, approach angle, prey 
size, and the habitat’s structural complexity (Blumstein et al. 
2003; Cooper et al. 2002; Nunes et al. 2015). Optimal escape 
theory predicts that a prey should begin to flee its approach‑
ing predator when it reaches a point where the risk of pre‑
dation is similar to the cost of escape (Ydenberg and Dill 
1986); and reveals that flight initiation distance increases 
when predators pose a greater threat, and decreases when 
escape costs increase (Cooper et al. 2002).

Animals often adopt consistent defense strategies when 
faced with danger—they vary according to temperament or 
personality. For instance, bold individuals typically behave 
more actively and may tolerate closer approach before flee‑
ing or actively fight off a predator, whereas shy individuals 
either flee at greater distances or they may try to avoid detec‑
tion in the first place by remaining perfectly still. Consist‑
ent individual differences in prey behavior, especially in the 
propensity to take risks (“boldness”), are widespread in the 
animal kingdom. Theory predicts that individual behavioral 
types differ, such that bolder individuals may benefit from 
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greater access to resources while paying higher predation‑
risk costs than less bold animals (Hulthén et al. 2017). Thus, 
anything that influences the probability of predation may 
influence the adaptive value of boldness.

In coral reef ecosystems, damselfish influence both ben‑
thic patterns and processes (Ceccarelli 2007). Damselfish 
defend their territories from intruders, and, by doing so, 
influence the structural makeup of diversity, algal biomass, 
coral zoning, and the structure of the benthic community 
within their territory (Helfman and Winkelman 1997; Fer‑
reira et al. 1998; Ceccarelli et al. 2001).

Given the conflicting demands of territory defense and 
flight, we asked how an extremely territorial damselfish 
makes these trade‑offs. Damselfish could respond two ways 
to variation in territory size. First, there could be a positive 
relationship between FID and territory size. This relation‑
ship may emerge, because prey are likely farther from their 
refuge, and by patrolling a larger territory, they are more 
exposed. Alternatively, there could be a negative relation‑
ship between FID and territory size. This could emerge if the 
number of refuges increases with territory size. Regarding 
territoriality, we expected a negative relation between flight 
initiation distance and territoriality (number of agonistic 
interactions). To more comprehensively understand these 
trade‑offs, we also quantified life stage and habitat structural 
complexity.

Materials and methods

Species and study area

We studied Stegastes fuscus an endemic damselfish found in 
the Southwestern Atlantic, and present in the Brazilian coast 
between the states of Maranhão and Santa Catarina (Sam‑
paio and Nottingham 2008). The species is abundant on reefs 
and rock shores (Ferreira et al. 2004, 2015). Its territories 
influence the diversity and biomass of the algal community, 
and provide hiding places and food resources for several 
mesoinvertebrate fauna in south‑east Brazil (Ferreira et al. 
1998). They are found in shallow waters (< 8 m), in both 
rocky and biogenic reef, and vary in color based on their age 
(Manegatti et al. 2003). They are diurnal herbivores that are 
extremely territorial, patrolling their and expelling intruders 
that enter their territory (Sampaio and Nottingham 2008; 
Júnior et al. 2010). They are small, at most 15 cm in length, 
and forage within relatively restricted areas (Ferreira et al. 
1998). However, this territory provides space for the con‑
struction of their nests, shelter against predators, and food.

We studied damselfish in the reefs off Boa Viagem beach, 
Todos os Santos Bay, Salvador (TSB), Bahia. Data were col‑
lected between October and December 2017 by snorkeling 
around and identifying damselfish territories that were in 

water no deeper than 2 m. Fish territories were separated by 
at least 4 m. This fringing reef is characterized by low wave 
energy, clear and shallow waters, and easy access. This reef 
is occupied by filamentous algae, sponges, calcareous algae, 
sea urchins, and corals (Cruz 2008), as well as several other 
fish species.

Quantifying agonistic interactions

We quantified aggressive interactions (bites and chases) and 
estimated territory size by conducting 5 min focal animal 
samples. Observers were trained to estimate fish body size 
in the previous studies (Nunes et al. 2015, 2016) and in this 
by estimating the size of model fish placed on the reef. Once 
trained, we estimated fish body size visually and classified 
individuals up to 7 cm as juveniles, and > 7 cm as adults, 
which correlates with color pattern differences from their 
corresponding life stages (Sampaio and Notimham 2008). 
We counted the number of these agonistic interactions 
each time which a focal individual interacted aggressively 
with the same or any other species of fish during the 5‑min 
period. Territory size was estimated during this same period 
of time, where markers were placed in the substrate at six 
extreme points of the area defended by the sampled indi‑
vidual. The three largest lengths between the points were 
measured, and from their mean value, it was possible to cal‑
culate the circular area of the territory (area = π. r2) (Aued 
2012). Ninety focal animals were observed, and following 
the focal observation, we measured that individual’s flight 
initiation distance.

Quantifying flight initiation distance

All flight initiation distances began with the observer posi‑
tioned 2 m from a focal subject. We estimated flight initia‑
tion distance by pushing a rod that had a replica of a 30 cm 
total length predator grouper (Epinephelus sp., Fig.  1) 
towards a focal subject at ~ 0.7 m/s. The observer swam in 
direction of the fish while following the bottom and thereby 
swam horizontally until reaching the target fish, upon which 
the observer stretched his arm to present the model to target 
fish. At the time the fish began to flee, the rod was placed on 
the substrate and the distance between the end of the model 
predator (mouth) and the place where the fish started to flee 
(FID) was measured with a measuring tape. It is important to 
stress that an escape occurred when the individual’s swim‑
ming speed increased beyond that of the model predator’s 
approach speed (Januchowski‑Hartley et al. 2011, 2012).

Quantifying habitat complexity

After measuring flight initiation distance (n = 90 fish), we 
quantified rugosity, frequently used as a proxy of structural 
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complexity, using Luckhurst and Luckhurst’s (1978) chain 
method, where a chain was placed on the substrate in such a 
way as to follow as closely as possible all the contours and 
crevices. This generated a measure of the surface that we 
expressed in relation to the linear distance (Luckhurst and 
Luckhurst 1978). The RI was calculated using the formula 
RI = linear/surface, in which “linear” means the measure of 
when the chain was stretched (1 m) and “surface” is the 
distance between the beginning and end of the chain when 
it is adjusted to all the contours and crevices. Three meas‑
urements of rugosity were made within all territories of the 
chosen fish (i.e., 270 measurements in total). We used the 
average of these three values as our measure of rugosity.

Statistical analyses

We used a backward stepwise algorithm to select the best 
model that explained variation in FID. Independent variables 
included structural complexity, prey size, territory size, and 
the number of agonistic interactions. Simple linear regres‑
sions were used to investigate the potential influence of habi‑
tat complexity on the size of the territory and the number 

of interactions and body size on FID. Normality and homo‑
geneity were investigated using Q–Q plots and the Levene’s 
test. We set our alpha to 0.05.

Results

Territories averaged 1.71  m−2 (± 0.83 SD; 0.25–3.89; 
N = 90), fish size averaged 8.7 cm (± 2.43 SD; 4–13; N = 90), 
and rugosity averaged 1.23 (± 0.1 SD; 1.04–1.52; N = 270). 
The mean initial flight distance was 35.5  cm (± 13.03 
SD; 19–80; N = 90), and the average number of interac‑
tions over 5 min was 3.2 (± 3.1 SD; 0–13; N = 90 fish, 286 
interactions).

After accounting for non‑significant variation in FID 
explained by territory size, the number of agonistic interac‑
tions (F = 0.327; p = 0.569), life phase (F = 0.007; p = 0.934), 
and body size (F = 1.01; p = 0.317), damselfish tolerated 
closer approach as rugosity increased (F = 4.28, p = 0.04; 
Fig. 2; Table 1).

There was no relationship between rugosity and territory 
size (F = 0.46; p = 0.50; R2 = 0.0052), nor was there a rela‑
tionship between the number of agonistic interactions and 
rugosity (F = 1. 30; p = 0.26; R2 = 0.01).

Discussion

We found no relationship between territory size and FID, 
and thus, our results did not support the hypothesis that 
larger territories, potentially with more refuges, modu‑
late risk perceptions. However, we found that as rugosity 
increased fish’s perceptions of risk decreased, corroborating 
the previous studies with other species (Nunes et al. 2015; 
Januchowski‑Hartley et al. 2015; Benevides et al. 2016). 

Fig. 1  Predator model used to stimulate flight of Stegastes fuscus (a). 
The moment that an individual S. fuscus began to flee (b)

Fig. 2  The relationship between rugosity and flight initiation dis‑
tance. Black line represents best fit for juveniles data, gray line for 
adults, and gray area is confidence interval (95%)
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This is likely to occur, because environments that are more 
complex provide more refuges. As a result, prey are more 
likely to escape than in environments that are more homo‑
geneous. Therefore, these individuals will adjust their FID 
in concordance with expectation from optimal escape theory 
(Cooper and Frederick 2007).

The previous studies have shown that habitat complex‑
ity, frequently estimated by rugosity, is positively associated 
with the abundance and diversity of fish species, precisely 
because complex environments provide more shelter (e.g., 
Luckhurst and Luckhurst 1978; Graham and Nash 2012). In 
addition, greater habitat complexity results in more areas 
suitable algae and invertebrates to grow and thrive (Nunes 
et al. 2013). Hence, increasing complexity not only provides 
more shelters, but can also increase other resources such as 
food availability (Cecarrelli et al. 2001).

Territories that have higher quality may have a greater 
value for the fish, since it may provide more shelters and 
more food (Johnsson et al. 2000). Animals seem to invest 
relatively more resources defending valuable habitats and are 
more reluctant to leave these environments, thus reducing 
their FID as habitat complexity increases. Complexity may, 
thus, be viewed as a metric of territory “quality”, and we 
assume that when individual’s make decisions about whether 
or not to defend a particular location, the rugosity plays an 
important role. Future studies are required to formally evalu‑
ate this hypothesis. For example, analyzing which variables 
(e.g., differences in shelter, food, and sexual partner avail‑
ability, and the presence of different predators and competi‑
tors) explain the most variance in territory choice will be 
essential to better understand the importance of rugosity.

Territorial defense is costly, since it decreases individual 
foraging time, and increases both energetic demands and 
predation risk (Cleveland 1999). Therefore, the number of 
agonistic interactions was expected to explain variation the 
FID, since individuals defending territories must allocate 
more energy to defense. We hypothesized that as an indi‑
vidual’s number of interactions increase, its energy expendi‑
ture would rise, and thus, the prey would only escape when 
essential, therefore, reducing its FID. We did not find this 
expected relationship. We used a short measure of agonistic 

interactions what could contribute to the potential lack of 
effect, given that there are a variety of variables that influ‑
ence agonistic interactions.

Individual body size is another variable that can influence 
flight initiation distance, but how it does so is not uniform 
(Gotanda et al. 2009; Feary et al. 2011). Our study did not 
find a significant relationship between these variables in the 
study area for the species studied. It is possible that, given 
high fishing pressure in the study area, the abundance of 
predators was massively reduced (especially groupers), and 
this limited the opportunity to learn from negative experi‑
ences with predators. However, the loss of some predators 
does not always result in a complete loss of antipredator 
behavior and the multipredator hypotheses predict, and a 
variety of species from diverse taxa reveal, that antipreda‑
tor behavior persists when isolated from some, but not all 
predators (Blumstein 2006; Rasheed et al. 2017; Carthey 
and Blumstein 2018).

It is important to know which variables influence fish 
anti‑predatory behavior, because this not only affects preda‑
tor–prey relationships, but can have cascading effects and 
influence the entire structure of communities, and even 
ecosystems. In the case of territorial species such as dam‑
selfish, which are considered key species in reef environ‑
ments, the presence of predators leads to behavioral changes 
and its consequences can alter the performance of an entire 
ecosystem.
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