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ARTICLE INFO
Psychological stress induced by exposure to predators has complex effects on the behaviour and phys-

iology of prey species. This includes potential influences on gene expression mediated via stress-
responsive physiological pathways such as the sympathetic nervous system and hypothalamus
—pituitary—adrenal (HPA) axis. Laboratory studies have documented diverse transcriptional effects of
predator-induced fear, but genomic responses to predator exposure in the wild remain poorly under-
stood. Here, we used RNA-sequencing to investigate the leukocyte transcriptome response to chronic
predator pressure in a well-studied population of wild yellow-bellied marmots, Marmota flaviventer. We
assessed the genomic response to this stressor in three ways by (1) identifying differentially expressed
individual genes across the genome, (2) assessing whether differentially expressed genes were statisti-
cally over-represented by functional categories and (3) testing for transcription factor activity that may
mediate observed gene expression differences. We found 349 individual genes regulated in association
with chronic predator presence, including transcripts known to regulate heat shock proteins, metabolism
and DNA damage repair. Gene ontology analysis revealed that the majority of these differentially
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HPA axis
predator—prey dynamics expressed genes were involved with the cellular response to stress, cellular metabolism and protein
RNA-seq transport. Transcription factor analysis implicated glucocorticoid signalling in mediating these effects.

transcriptomics Our work confirms that the physiological response to predator-induced stress is complex, initiating
transcriptional activity in multiple processes and pathways. In addition to the canonical expectations
that individuals exposed to predators mobilize HPA signalling and homeostasis pathways, we also
detected activity in genes typically associated with human anxiety and cerebral function. This is the first
study to demonstrate that leukocyte transcriptomes taken from animals living in a natural environment
can reflect the complex ecology of fear.

© 2019 Published by Elsevier Ltd on behalf of The Association for the Study of Animal Behaviour.

Psychological stressors can induce dramatic physiological and
behavioural responses. Brain-mediated activation of the sympa-
thetic nervous system in response to a threatening stimulus re-
directs cognitive and physical attention towards the threat.
Specifically, heart rate and attention increase, and energy from
glucose is mobilized from fat (Sapolsky, Romero, & Munck, 2000).
The hypothalamus—pituitary—adrenal (HPA) axis also reacts by
releasing glucocorticoid hormones (GCs). These well-studied hor-
mones are key to mobilizing and redirecting stored energy away
from long-term investments such as growth and reproduction
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towards more immediate needs including energy metabolism and
locomotor activity (Sapolsky et al., 2000). Vertebrates elevate GCs
in response to diverse stressors such as a shortage of food (Clinchy,
Zanette, Boonstra, Wingfield, & Smith, 2004; Lynn, Breuner, &
Wingfield, 2003), an inhospitable social environment (reviewed
by Creel, Dantzer, Goymann, & Rubenstein, 2013) and increased
predator exposure and/or abundance (Clinchy et al., 2004; Creel,
Christianson, & Schuette, 2013; Van Meter et al., 2009).

These physiological responses are likely to be mediated in part
by gene expression. Stress puts cells at risk, and transcriptional
mechanisms are critical in preventing cellular damage and
neutralizing the effects of various stressors to re-establish ho-
meostasis. For example, genes involved in regulating heat shock
proteins alter expression under thermal stress across diverse taxa,
including yeast (Causton et al., 2001), mussels (Gracey et al., 2008)
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and guppies (Fraser, Weadick, Janowitz, Rodd, & Hughes, 2011).
Pro-inflammatory genes respond to physical stressors such as
electrical shock (Blandino et al., 2009; Nguyen et al., 1998), swim
tests (Cullinan, Herman, Battaglia, Akil, & Watson, 1995) and ex-
ercise (Goebel, Mills, Irwin, & Ziegler, 2000; Walsh et al., 2001).
Physical restraint also affects gene expression. Immobilization led
to increased inflammatory activity in rat brains (Cullinan et al.,
1995; Minami et al., 1991), chicken muscle activated carbohydrate
metabolism and cytoskeleton development genes during transport
(Hazard et al., 2011) and confined wild canids showed activation of
actin and cytoskeleton-related genes (Kennerly et al., 2008). Tran-
scriptional activity thus appears to be a major component in the
adaptive response to psychological stress, although patterns vary
according to the tissue and stressor examined.

Predation is a powerful selective force and psychological
stressor. It has become increasingly apparent that even when
predators do not directly kill prey, their presence indirectly affects
prey population dynamics, behaviour and physiology (Clinchy,
Sheriff, & Zanette, 2013; Martin, 2011; Preisser, Bolnick, & Benard,
2005). Such physiological responses are evident on the molecular
level as gene expression consistently responds to predators under
experimental conditions. Exposure to a predator (or predator cues)
induces activation of a wide range of molecular pathways, including
heat shock proteins (Pauwels, Stoks, & De Meester, 2005;
Pijanowska & Kloc, 2004), cytoskeleton organization (Pijanowska
& Kloc, 2004), inflammation (Su, Xie, Xin, Zhao, & Li, 2011), path-
ogen defence and visual perception (Sanogo, Hankison, Band,
Obregon, & Bell, 2011). However, the transcriptomic response to
predators in natural and uncontrolled settings remains poorly un-
derstood. To our knowledge, Lavergne, McGowan, Krebs, and
Boonstra (2014) conducted the only study examining gene
expression associated with predator presence in a wild mammal
population. The authors found that brain tissue taken from snow-
shoe hares, Lepus americanus, during periods of relatively high
predator abundance (Lynx canadensis) showed significantly altered
expression of genes involved in metabolism, hormone responses
and immune function. This intriguing study revealed for the first
time that the molecular response to predation risk can be observed
outside of an experimental setting. However, like other stressors,
the genomic response to predation threat is likely complex and not
uniform across species and tissues. Here we determine whether
genes are differentially expressed as a function of predator abun-
dance in blood, a less invasive assay than sampling brain tissue and
one that permits larger sample sizes.

Yellow-bellied marmots, Marmota flaviventer, in the vicinity of
the Rocky Mountain Biological Laboratory (RMBL; Crested Butte,
CO, U.S.A.) have been studied continuously since 1962, providing an
ideal system to assess the molecular pathways associated with fear
of predation. Marmots are prey of several mammalian and avian
predators, and predation is a constant threat. In this population,
98% of summer mortality events are due to predation (Van Vuren,
2001), and marmot colonies experience different degrees of
exposure to predators. This long-term study has led to significant
insights into the direct and indirect effects of predators on this
species. Ecologically, the persistence of a marmot colony is better
predicted by predation-related attributes such as visibility and
underground protection than food-related factors (Blumstein,
Ozgul, Yovovich, Van Vuren, & Armitage, 2006). Behaviourally,
marmots have evolved a rich repertoire of antipredator tactics to
minimize risk. This species can identify potential predators by sight
(Blumstein, Ferando, & Stankowich, 2009), sound (Blumstein,
Cooley, Winternitz, & Daniel, 2008) and smell (Blumstein, Barrow,
& Luterra, 2008), and they communicate predation risk with
others using alarm calls (Blumstein, 2007). Glucocorticoid levels
are also positively correlated with the degree of predator presence

at a colony (Blumstein, Keeley, & Smith, 2016). Thus, marmots in
areas of high predator abundance appear to be significantly more
stressed compared to those that experience low predation pressure.

To better understand the physiological pathways activated in
response to predator-induced stress, we quantified genome-wide
transcription levels in blood from yellow-bellied marmots. Whole
transcriptome profiling (or RNA-seq) is a valuable tool for assessing
cellular physiology because this technique can identify a molecular
response to environmental stimuli on many levels, including indi-
vidual genes, coordinated gene networks and activated regulatory
pathways (e.g. transcription factors). We sequenced blood RNA
because collection is minimally invasive and unlike more function-
specific tissues, it can be used to explore a variety of somatic
functions. Leukocytes share approximately 80% of mRNA with other
tissues (Liew, Ma, Tang, Zheng, & Dempsey, 2006) and have been
used as surrogate for multiple tissues (Davies et al., 2009; Kohane &
Valtchinov, 2012; Rudkowska et al., 2011; Sullivan, Fan, & Perou,
2006). Although whole blood is not a perfect surrogate for other
tissues, it can provide information in several important pathways, it
is responsive to hormones and other systemic influences that
impact multiple tissue systems and its availability provides for
enhanced statistical power in larger sample sizes.

Our goal was to compare the transcriptomic profile in leuko-
cytes of marmots that experienced high predation pressure with
that observed in marmots experiencing low predation pressure as
quantified by the frequency of observed predators. We analysed the
data at three different levels of cellular response. First, we tested for
significant differential expression of individual genes using a
genome-wide discovery approach. Second, we tested for enrich-
ment of functional pathways in these genes using gene ontology.
Third, we identified upstream transcription control pathways that
may mediate these changes in gene expression. Based on previous
research examining the transcriptional response to predation
(Lavergne et al., 2014; Pauwels et al., 2005; Sanogo et al., 2011; Su
et al., 2011), we expected four pathways to be upregulated by in-
dividuals experiencing high predator pressure: glucocorticoid sig-
nalling, inflammation, metabolism and heat shock proteins.

METHODS
Study Subjects

During the summers of 2013—2015, we studied free-living yel-
low-bellied marmots in and around RMBL in Gothic, Colorado,
U.S.A. Yellow-bellied marmots are facultatively social, sciurid ro-
dents that are active from approximately mid-April to mid-
September and hibernate the remainder of the year (Blumstein,
Im, Nicodemus, & Zugmeyer, 2004). Marmots were trapped
biweekly throughout the active season using Tomahawk live traps
and affixed with numbered eartags and unique fur marks to facil-
itate individual identification from afar (Blumstein, 2013).

Ethical Note

All procedures were approved under Institutional Animal Care
and Use Committee (IACUC) research protocol number ARC 2001-
191-01 by the University of California Los Angeles on 13 May 2002,
and renewed annually, as well as annual permits issued by the
Colorado Division of Wildlife (permit number TR-917). In order to
not disturb normal marmot behaviour, colony observations were
conducted from a distance (20—150 m) using binoculars and
15—45x spotting scopes. We set Tomahawk live traps most
mornings and afternoons (at approximately 0700 and 1600 hours
Mountain Standard Time), weather permitting. We did not set traps
during rain, snow or extreme heat. Marmots were in traps for a
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maximum of 2—3 h, and traps were shaded with vegetation on
warm days. Marmot handling was brief (typically 5—15 min
depending upon the data to be collected). To minimize stress and
struggling, handling was conducted with marmots inside a conical
cloth handling bag. Carefully trained individuals swabbed the
femoral vein with alcohol to reduce the chance of infection,
collected up to 3 ml of blood, and applied moderate pressure after
venipuncture until bleeding stopped. Marmots were not injured
during handling. Individuals were immediately released at the trap
location and long-term adverse effects due to trapping procedures
were not observed.

Using Predator Abundance as a Proxy for Predator Pressure

Predator presence was calculated using the frequency of daily
predator sightings at a marmot colony divided by the number of
observation sessions at that colony for each year during 2013—2015.
In other words, each day that we observed a colony, we applied a
binary score (0 or 1) indicating whether a predator was seen.
Species that depredate RMBL marmots include the red fox, Vulpes
vulpes, coyote, Canis latrans, American badger, Taxidea taxus, red-
tailed hawk, Buteo jamaicensis, and golden eagle, Aquila chrys-
aetos. Quantifying predator abundance in this way is a relatively
conservative measure because it eliminates the possibility of
inflating predator pressure if the same individual predator is
observed multiple times in one day. We then divided the number of
days predators were observed by the total number of observation
days at that colony, for a proportional value ranging from 0 to 1
indicating predator abundance for each colony-year. We limited
observations to the early season (mid-April through the end of
June) because after this period, vegetation grows rapidly, making
terrestrial predators harder to observe. Each year was analysed
separately. We then calculated the median predator index across all
colony-years. Colony-years with values below the median were
considered low predator abundance areas, whereas colony-years
above the median were considered high predator abundance
areas, as done previously (e.g. Blumstein et al., 2016; Mady &
Blumstein, 2017; Monclas, Tiulim, & Blumstein, 2011). All ob-
servers were trained to identify both aerial and terrestrial predators
at study sites.

RNA Sampling, Library Preparation and Sequencing

We preserved 1 ml whole blood from live-trapped marmots in
25ml PAXgene™ Blood RNA solution (PreAnalytiX, Hom-
brechtikon, Switzerland). We removed globin transcripts using the
rodent GLOBINclear™ kit (Ambion, Waltham, MA, US.A.) and
assessed RNA quality with a Bioanalyzer 2100 (Agilent, Santa Clara,
CA, US.A.). To preserve statistical power, we excluded samples with
RNA Integrity Number (RIN) < 4 and corrected for RNA degradation
by regressing the effect of RIN (a technique validated by Romero,
Pai, Tung, & Gilad, 2014, details below). We prepared cDNA li-
braries using a TruSeq Library Prep Kit v2 (Illumina, Madison, WI,
U.S.A.), quantified cDNA with the KAPA SYBR® Fast qPCR library
quantification kit (Kapa Biosystems, Wilmington, MA) and pooled
8—10 samples per lane. We used Illumina HiSeq2000 (2013 sam-
ples) and HiSeq4000 (2014—2015) platforms at the Vincent Coates
Sequencing Laboratory (Berkeley, CA) to create single-end 100 base
pair (bp) sequences. We sequenced only yearling marmots to
control for any effect of age on gene expression.

Read Mapping

There are a few strategies for analysing gene expression, each
with strengths and weaknesses. First, a de novo transcriptome can

be built and used to map RNA reads. This technique is excellent for
examining transcriptomic divergence between species and for
identifying variants such as single nucleotide polymorphisms
(SNPs) in RNA-seq data. However, transcriptome assemblies are
difficult to resolve unambiguously because variants such as SNPs
are often interpreted as multiple isoforms of a gene (Martin &
Wang, 2011). Consequently, assemblers perform best when built
from a high-coverage RNA library from a single individual whereas
assemblies built from multiple individuals require additional
mapping to the closest genome for cleaning and annotation.
Alternatively, one can map reads to a reference genome of a closely
related species. This strategy can result in the loss of a large pro-
portion of RNA reads due to divergence between the reference
genome and the RNA sequences, but it performs well in quantifying
expression of gene homologues.

The objective of our study was to quantify gene regulation
during exposure to an ecological stressor in a relatively large
sample of individuals. Therefore, we elected to map reads to the
most closely related genome available (thirteen-lined ground
squirrel, Ictidomys tridecemlineatus; GenBank Assembly ID
GCA_000236235.1). We believe this is the most appropriate
approach for this study design and have successfully implemented
it in a number of similar studies in nonmodel organisms (see
Charruau et al., 2016; Fraser et al., 2018; Johnston, Paxton, Moore,
Wayne, & Smith, 2016). We removed adapters, short (< 20 bp)
and low-quality reads (Phred score <20) using Trim Galore!
(Krueger, 2015) and mapped resulting reads to the thirteen-lined
ground squirrel genome using TopHat2 v.2.1.0 (Kim et al., 2013).
These species diverged approximately 8.6 million years ago
(Bininda-Emonds et al., 2007) and exhibit sequence divergence of
13.2% (Thomas & Martin, 1993). We maximized read mapping by
allowing eight mismatches, a 10 bp gap length and a 20 bp edit
distance between reads and the reference genome.

Expression Quantification and Outlier Removal

We used HT-Seq's ‘union’ mode (Anders, Pyl, & Huber, 2015) to
quantify uniquely mapped transcripts. Downstream analyses were
conducted in R v.3.3.1 (R Core Team, 2016). We acquired HGNC
(HUGO Gene Nomenclature Committee; Gray, Yates, Seal, Wright, &
Bruford, 2014) gene symbol information for squirrel transcripts in
BiomaRt (Smedley et al., 2015). We filtered the data set to include
protein-coding genes with at least 10 reads in 75% of libraries and
transformed count data for linear modelling. We normalized counts
according to sequencing depth, gene length and mean variance
using LIMMA's ‘voom’ function (Law, Chen, Shi, & Smyth, 2014;
Ritchie et al., 2015). We created a distance-based network of sam-
ples using WGCNA's ‘adjacency’ function (Langfelder & Horvath,
2008). Samples with connectivity greater than three standard de-
viations from the mean were considered outliers and removed (as
in Horvath, 2011). We also used WGCNA to identify coexpression
modules that associate with predator abundance. However, when
we ran these analyses, no modules were found to be significantly
associated with predator abundance.

Removal of Technical Variation

Batch effects are ubiquitous in high-throughput genetic studies
(Leek et al., 2010). To correct this bias, we used principal compo-
nent analysis (PCA) of the normalized, transformed expression
counts to assess variance due to technical factors. We regressed the
effect of technical variables that were correlated with any of the
first 12 principal components (PCs) using a significance threshold
of 0.05.
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Genome-wide Discovery Analyses

To identify individual genes that were significantly associated
with predator abundance, we created linear mixed models using
EMMREML (Akdemir & Godfrey, 2015). Fixed effects included
predator pressure (a binary variable; low, high), day of the year and
time of day of sample collection (to account for seasonal and
circadian variation, respectively) and sex. Kinship was included as a
random effect to control for heritability of gene expression (Wright
et al., 2014). We calculated kinship based on pairwise relatedness
obtained from 12 microsatellite loci using the triadic maximum
likelihood approach in COANCESTRY (Wang, 2011). Dependent
variables of mixed models were the residuals of the filtered,
normalized and regressed gene expression counts. For each gene
model, we extracted the P value associated with predator pressure
and performed multiple hypothesis adjustment using the false
discovery rate (q; Storey & Tibshirani, 2003) in QVALUE (Storey,
Bass, Dabney, & Robinson, 2015). A gene was considered signifi-
cantly associated with predation when q was < 0.1.

Functional Enrichment Analysis

To identify the biological processes that were statistically over-
represented in the differentially expressed genes, we performed
gene ontology (GO) analysis using gProfileR (Reimand et al., 2016).
We separated up- and downregulated genes and used these two
lists as queries in gProfileR. The background list, or null set, of genes
included the 9063 detectably expressed (>10 reads in 75% of li-
braries), annotated protein-coding genes identified in the marmot
transcriptome. We set the minimum functional category and
intersection sizes to five, used the ‘moderate’ hierarchical filter and
corrected for multiple testing using the ‘gSCS’ method. The signif-
icance threshold was 0.05.

Quantifying Transcription Factor Activity

To evaluate the role of glucocorticoid receptor (GR) signalling in
mediating the observed expression differences, we scanned the
promoters of all genes showing >1.25-fold difference in expression
between colonies with high versus low predator abundance for
glucocorticoid response elements using the TELiS database (Cole,
Yan, Galic, Arevalo, & Zack, 2005). GR response element preva-
lence was assessed using the TRANSFAC mat_sim statistic
computed over the VSGR_Q6 position-specific weight matrix (Cole
et al,, 2005). As in previous studies (Miller et al., 2008, 2014), in-
tensity of GR activation was inferred from the ratio of GR response
element prevalence within promoters of upregulated genes relative
to downregulated genes, with (log;) ratios averaged over nine
parametric variations in promoter length (—300 nucleotides
(nt), —600 nt, and —1000 nt to +200 nt relative to the RefSeq start
site) and response element detection threshold (mat_sim >0.80,
0.90 and 0.95). Statistical significance of mean log ratios was
assessed by bootstrap resampling of differentially expressed genes.

RESULTS
Predation Indexes

During the 2013—2015 summer seasons, we observed marmots
for 5039 h and detected 300 predators in 27 colony-years. Of these,
184 predators were observed prior to 1 July. These sightings largely
consisted of red foxes (N = 82), coyotes (N = 32) and various rap-
tors (N = 51). Predation indexes ranged from 0.013 to 0.463, indi-
cating that a predator was observed nearly every other day in some
colonies. The median cut that separated areas of low versus high

predator pressure was 0.092 (mean +SD: low predator index:
0.073 + 0.036; high predator index: 0.219 + 0.092).

RNA-seq Samples

We extracted high-quality RNA sequences from 79 individual
yearling marmots. We generated 32.5 million reads per individual
on average, of which 18.8 million (58.8%) uniquely mapped to the
squirrel genome. Of the 22 389 protein-coding genes in the squirrel
genome, 11440 (51.9%) were substantially expressed (>10 reads in
75% of libraries). We used the 9063 annotated genes in subsequent
analyses. Three batch effects significantly influenced one of the first
12 PCs of gene expression (P < 0.05): sequencing platform (HiSeq
2000 versus 4000), RNA extraction batch (samples were extracted
in seven batches) and input RNA concentration. To control for RNA
degradation, we also regressed the effect of RIN (Romero et al.,
2014). Clustering analysis revealed one outlier sample, resulting
in 78 total individuals for subsequent analyses. Predation indexes
for this data set ranged from 0.013 to 0.463 (median = 0.117). Using
this median split, 40 RNA samples came from colonies that expe-
rienced low predation pressure, whereas 38 RNA samples came
from colonies that experienced high predation pressure.

Linear Mixed Effects Models

After controlling for sampling date, time, sex and relatedness,
349 of 9063 annotated genes were differentially expressed as a
function of predator index (q <0.1; see Supplementary Material
Table S1, for supporting information). Of these, 203 were signifi-
cantly upregulated (positive log, fold changes) in marmots exposed
to high predator indexes, whereas 146 were downregulated
(negative fold changes; Fig. 1). Upregulated genes included heat
shock proteins and genes important for DNA replication and
damage repair processes. Downregulated genes included many
involved in central nervous system development, anxiety and
depression disorders, oxidative damage and toxin exposure.

Enriched Functional Categories

Gene ontology analysis of upregulated genes revealed categor-
ical enrichment of five biological processes (Table 1). In line with
our predictions, marmots in colonies with high predator indexes
primarily upregulated genes involved in metabolism, protein syn-
thesis and transport, and the cellular response to stress. Down-
regulated genes were statistically over-represented by one
functional category (‘metabolic process’).

Predation Transcription Factor Analysis

Genes that upregulated >1.25-fold in association with predator
pressure showed a significant enrichment of glucocortoid receptor-
binding motifs with their promoters (mean + SD ratio: 2.16-
fold + 0.73, P=0.03). Consequently, marmots that lived in col-
onies where many predators were observed showed bioinformatic
indications of increased glucocorticoid signalling, which is consis-
tent with our hypothesis that these animals are chronically stressed
by predators.

DISCUSSION

Even in the absence of direct mortality, the psychological stress
induced by predators can have complex and long-lasting effects on
prey demography, behaviour and physiology. To our knowledge,
this study is the first to reveal that signatures in leukocyte tran-
scriptomes of wild animals reflect the fear associated with predator
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Figure 1. Volcano plot showing fold change in individual gene expression as a function of predator index for 9063 genes. Horizontal dashed line indicates a g value of 0.1. Genes in
grey are not significantly associated with predation, black dots are significantly associated (N = 349). Genes are highlighted in blue if downregulated and in red if upregulated.

presence. We found that cells taken from yellow-bellied marmots
that experienced chronic predator pressure showed differential
expression of genes involved in numerous functional pathways and
somatic processes, many of which were consistent with previous
studies of predator-mediated effects (see below). Based on the
extensive associative evidence between inflammation and stress,
we were surprised not to have detected the inflammatory tran-
scriptional response we predicted. However, one other observation
that did emerge in this study may help explain that lacuna. Our
hypotheses regarding glucocorticoid signalling, heat shock protein
response and metabolic changes as a function of predator exposure
were supported. In addition to their effects on metabolism and
other physiological processes, glucocorticoids have potent anti-
inflammatory effects (Sapolsky et al., 2000). As such, threat-
related activation of glucocorticoid signalling in high predator-
exposed marmots may have been sufficient to suppress transcrip-
tion of pro-inflammatory genes that might otherwise have been
activated by less intense forms of stress response (e.g. the pro-
inflammatory effects of SNS signalling in the absence of HPA axis
activation).

Glucocorticoid Signalling

The HPA axis produces glucocorticoid hormones to modulate
energetic reactions to various stressors and restores homeostasis.
GCs are among the most commonly used proxies for stress, and
measuring levels of these hormones is valuable for evaluating the

psychological effects of a stressor, especially in natural systems
(Reeder & Kramer, 2005). In fact, previous research in this popu-
lation has shown that marmots that live in colonies frequently
visited by predators have significantly increased faecal glucocorti-
coid levels (Monclis et al., 2011). We note, however, that this
relationship was not statistically significant in this smaller data set
(Cohen's d = 0.05, P = 0.39; Fig. 2).

This study improved our knowledge of GC hormone activity by
evaluating the GC transcriptional pathways induced by predators.
We predicted that marmots exposed to chronic, high predator
abundance would upregulate genes bearing response elements for
the glucocorticoid receptor. Transcription factor analysis supported
this prediction. We found GC receptor-binding motifs to be statis-
tically enriched in the promoters of genes upregulated during
chronic predator exposure. This combination of higher GC hor-
mones and increased GC receptor transcription activity supports
our hypothesis that these animals are chronically stressed by
repeated exposure to predators.

Heat Shock Proteins

Since their discovery during a severe heat stress experiment
(Ritossa, 1962), heat shock proteins (HSPs) have been shown to
respond to an array of biotic and abiotic stressors including extreme
cold (Matz, Blake, Tatelman, Lavoi, & Holbrook, 1995), desiccation
(Hayward, Pinehart, & Denlinger, 2004), disease (Chai,
Koppenhafer, Bonini, & Paulson, 1999) and environmental

Table 1
Summary of gene ontology results for genes that were upregulated and downregulated as a function of predator pressure
Enriched biological process Number of genes P
Upregulated gene list Cellular response to stress 28 9.65E-05
Intracellular protein transport 19 0.00167
Nucleobase-containing compound metabolic process 85 7.87E-20
Nucleotide metabolic process 13 0.041
Ribonucleoprotein complex assembly 8 0.0167
Downregulated gene list Metabolic process 74 0.000231
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Figure 2. Box plot showing the relationship between predator index and average
faecal glucocorticoid measures across the active season. Note that faecal samples were
not available for all individuals with RNA sequence data (N = 63).

toxicants (Richter et al., 2011). Stressful conditions often result in
misfolded proteins and cell death, but HSPs enhance cell survival
and maintain homeostasis. HSPs act as molecular chaperones by
interacting with other proteins to ensure they are synthesizing,
folding and transporting critical proteins correctly during stressful
times (Gething & Sambrook, 1992).

Because of this long-standing association between heat shock
proteins and the stress response, it was no surprise that five genes
that encode HSPs were associated with chronic predator presence
in this study. DNAJC2 (HSP40 member C2), DNAJC8 (HSP40 member
C8), HSPA4 (HSP70 member 4), HSPA9 (HSP70 member 9) and
HSP90B1 were all significantly upregulated by marmots in high-
predation colonies (Figs. 1 and 3). Thus, the fear of predator pres-
ence was powerful enough to initiate the expression of these
important molecular chaperones in marmot leukocytes.

Cellular Homeostasis and DNA Repair

In addition to individual HSPs, we found that the 203 genes
upregulated by marmots in areas of high predator presence were
statistically enriched for specific homeostatic functions managed
by HSPs including the ‘cellular response to stress’, ‘intracellular
protein transport’ and ‘ribonucleoprotein complex assembly’
(Table 1). RFC4, MLH1, RPA2, FANCD2, XRCC5, PRKDC, TRIP12 and
RRM1 have gene ontology annotations in DNA repair and DNA
damage control (Carbon et al., 2017, 2009). Specifically, RF(4 is a
DNA mismatch repair gene that is essential for proper genetic
replication and DNA damage checkpoints (Kim & Brill, 2001). RPA2
binds and stabilizes single-stranded DNA intermediates that form
during DNA replication or upon DNA stress (Wold, 1997; Zou &
Elledge, 2003). MARCH?2 is a central member of the ubiquitin sys-
tem (Cheng & Guggino, 2013), which regulates cell homeostasis
and appears to be important in the response to thermal and
endoplasmic reticulum stress in animals (Verleih et al., 2015; Xia
et al., 2017). MLH1 is a DNA mismatch repair gene that is down-
regulated during hypoxic stress (Mihaylova et al., 2003). Thus, DNA
damage repair appears to be an important component in dealing
with the stress associated with chronic exposure to predators in a
natural setting as well.

Anxiety-associated Behaviours

The threat of predation is a universally stressful experience.
Thus, it is one of the most commonly used stressors in modern
studies evaluating anxiety and post-traumatic stress disorders
(Cohen, Matar, & Zohar, 2008). Whereas most contemporary
studies use laboratory animal models to investigate the transcrip-
tion behind anxiety behaviours, our results confirmed genetic re-
sponses to anxiety in a wild population. We found that PTP4A3,
which typically exhibits lower expression in humans with major

Figure 3. Expression levels of differentially expressed heat shock proteins, grouped by predator abundance index. Each panel represents a single gene, labelled in the lower-right
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depressive disorder (Pajer et al.,, 2012) and post-traumatic stress
disorder (Logue et al., 2015), was downregulated in high-predation
areas. ALAD, a gene associated with social phobias and general
anxiety (Donner et al., 2008), and FZR1, which is associated with
human depression (Tochigi et al., 2008), were also differentially
expressed as a function of predator abundance. However, we note
that ALAD and FZR1 were previously found to be upregulated by
individuals with anxiety disorders, whereas in this data set, they
were downregulated by individuals that were often exposed to
predators.

We found it a bit surprising that the differentially expressed
genes involved in the central nervous response and anxiety disor-
ders (TP73, MYRF, UMODL1, ALAD, FZR1, PTP4A3) were largely
downregulated by marmots experiencing high predator pressure.
Although a few of these genes exhibited the same directional fold
change as previous studies (e.g. PTP4A3), most were observed in the
opposite direction (ALAD, FZR1). This difference may be due to the
chronic nature of this stressor and the species in which we studied
these dynamics. Specifically, acute stress is transient and usually
provides a protective benefit. Excessive activation of the HPA axis
due to chronic stress, however, can lead to pathologies such as
sensitization to stressors, impaired hippocampal function and
prolonged anxiety-like behaviours (Gray, Rubin, Hunter, &
McEwen, 2014; McEwen & Gianaros, 2010). Thus, it is possible
that the longer time frame over which these stressors occurred in
our study compared to previous studies may have led to sensiti-
zation and different transcriptional processes. Furthermore, most of
the studies cited above assayed gene expression in humans expe-
riencing social anxiety or depression, whereas we studied wild
animals exposed to their predators. An organism's genomic
response probably differs dramatically under stressful conditions
that threaten survival. Further research is needed to evaluate how
these specific genes respond to psychological stressors in different
contexts.

Metabolism and Growth

The HPA stress response and GCs mobilize stored energy for
immediate needs and suppress long-term growth (Sapolsky et al.,
2000). Therefore, we predicted that predator-induced differen-
tially expressed genes would be associated with increased energy
metabolism and gluconeogenesis of body proteins.

Since psychological stress is known to promote short-term
growth, we specifically expected lipid or carbohydrate metabolic
pathways to be enriched in individuals experiencing high predator
pressure. However, our data did not confirm this prediction. Gene
ontology results indicated an enrichment of activity in metabolic
processes, but terms were associated with cellular and nucleotide
metabolism, not lipid or carbohydrate metabolism per se. Upre-
gulated genes were largely involved in the ‘nucleobase-containing
compound metabolic process’ and the ‘nucleotide metabolic pro-
cess’, whereas downregulated genes were enriched for simply
‘metabolic process’.

We did, however, observe differential expression of a few genes
that support the stress-induced energy metabolism and growth
narrative. PDK1 encodes for pyruvate dehydrogenase kinase 1, one
of the major enzymes responsible for the regulation of homeostasis
of carbohydrate fuels in mammals (Mora, Komander, Van Aalten, &
Alessi, 2004). DLD is also critical in energy metabolism, among its
many functions (Dashty, 2013). As predicted, these genes were
upregulated by marmots experiencing chronic predator stress.
FADS6 has been implicated in the metabolism of lipids and fatty
acids (Guillou, Zadravec, Martin, & Jacobsson, 2010; Liu et al., 2012),
but it was downregulated by individuals experiencing high pre-
dation abundance. PHOSPHO1 is involved in the mineralization of

bone and cartilage (Houston, Stewart, & Farquharson, 2004). This
gene was significantly downregulated by marmots experiencing
high predation risk, thus supporting the hypothesis that the
chronic stress of predator pressure might suppress skeletal growth.

We acknowledge, however, limitations in our study system and
methodological approach. The aim of this study was to examine the
transcriptional response to predation stress in a wild, nonmodel
organism, which presents both unique insights and unique chal-
lenges. At the time of analysis, the closest available genome to the
yellow-bellied marmot was the thirteen-lined ground squirrel,
which diverged from the study species approximately 8.6 million
years ago (Bininda-Emonds et al, 2007). When mapping to
distantly related species in this way, sequence divergence between
the species can result in reads not aligning to the reference genome
or aligning to more than one gene. The former problem can lead to a
large amount of missing data whereas the latter may introduce
false positive genes and inaccurate interpretations. To prevent such
spurious results, we limited analyses to only those reads that
mapped uniquely to a single location in the squirrel genome (on
average, 59% of reads in each sample mapped uniquely to the
reference). However, sequence divergence may still allow marmot
reads to align to nonhomologous squirrel genes, potentially
resulting in false positive results. Thus, our approach of mapping
RNA reads to the squirrel genome may have altered the true list of
individual differentially expressed genes associated with fear of
predation and, subsequently, the transcription factor and gene
ontology interpretations. Careful consideration of methodology
and genomic resources should be taken when designing, analysing
and interpreting similar RNA-seq studies in nonmodel organisms.

In aggregate, our results suggest that the stress of noncon-
sumptive predator presence is powerful enough to induce multiple
aspects of the cellular stress response in wild prey. We identified
individual predator stress-associated genes that transcribe proteins
that are critical in maintaining homeostasis and metabolism, found
that the majority of these transcripts are involved in the canonical
cellular stress response and established that the promoters of
upregulated genes were highly enriched for glucocortoid receptor-
binding motifs. This transcriptome-wide approach was a unique
advance over prior work that selectively focused on a handful of
candidate genes or investigated hormonal correlates of stressors.
Our analysis confirmed that even in a natural population, cellular
transcription of diverse genes and pathways that enhance cellular
homeostasis can be observed in response to a powerful psycho-
logical stressor.
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