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Abstract
1.	 Identity signals have been studied for over 50 years but, and somewhat remark-

ably, there is no consensus as to how to quantify individuality in animal signals. 
While there is a variety of different metrics to quantify individuality, these meth-
ods remain un‐validated and the relationships between them unclear.

2.	 We contrasted three univariate and four multivariate identity metrics (and their 
different computational variants) and evaluated their performance on simulated 
and empirical datasets.

3.	 Of the metrics examined, Beecher's information statistic (HS) performed closest 
to theoretical expectations and requirements for an ideal identity metric. It could 
be also easily and reliably converted into the commonly used discrimination score 
(and vice versa). Although Beecher's information statistic is not entirely independ-
ent of study sampling, this problem can be considerably lessened by reducing the 
number of parameters or by increasing the number of individuals in the analysis.

4.	 Because it is easily calculated, has superior performance, can be used to quan-
tify identity information in single variable or in a complete signal and because it 
indicates the number of individuals who can be discriminated given a set of meas-
urements, we recommend that individuality should be quantified using Beecher's 
information statistic in future studies. Consistent use of Beecher's information 
statistic could enable meaningful comparisons and integration of results across 
different studies of individual identity signals.
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1  | INTRODUC TION

The fact that individuals differ in consistent ways is a both a cen-
tral attribute of life and one that underlies a number of theoretically 
important questions such as explaining cooperative behaviour or 
understanding the evolution of sociality (Bradbury & Vehrencamp, 
1998; Crowley et al., 1996; Tibbetts, 2004). Such individuality can 
also be important in wildlife conservation as well when it is used 
to help census or monitor individuals based on individually distinc-
tive traits (Blumstein et al., 2011; Terry & McGregor, 2002). And, 
because, animals may base their decisions on the identity of the 
individual with whom they interact or respond to (Godard, 1991; 
Wilkinson, 1984), there may be selection to both produce individ-
ually distinctive signals, and selection to discriminate among them 
(Tibbetts & Dale, 2007; Wiley, 2013).

Quantification of individual identity (individuality) requires 
the assessment of variation in one or more traits between at least 
two individuals. For identity signals to function properly, they 
should maximize the between‐individual variation and minimize 
the within‐individual variation (Beecher, 1982, 1989). A variety of 
identity metrics have proliferated because of recognized biases (e.g. 
it is more likely to find similar individuals in larger populations and, 
hence, it will be more difficult to discriminate individuals in large 
populations or studies involving more individuals). These biases 
make the comparison of results among studies unreliable (Beecher, 
1989; Mathevon, Koralek, Weldele, Glickman, & Theunissen, 2010). 
Additionally, some existing metrics were considered unsuitable for 
a particular signal type (Searby & Jouventin, 2004). Nevertheless, 
new alternatives were not always thoroughly tested and were not 
shown to be superior to the metrics they attempted to replace. 
Furthermore, there are methodological problems that result from 
the calculation of particular identity metrics, and some studies have 
used different equations to calculate the same identity metric. Thus, 
somewhat remarkably given its importance, there is no consensus 
about how to properly measure identity. As a result, researchers 
have generally avoided quantitative comparisons between studies 
(Insley, Phillips, & Charrier, 2003). In a few cases, researchers tried 
to overcome problems with identity metrics in comparative analyses 
by using exactly the same methods across involved species (Beecher, 
Medvin, Stoddard, & Loesche, 1986; Lengagne, Lauga, & Jouventin, 
1997; Pollard & Blumstein, 2011). Thus, hundreds of isolated stud-
ies have been published on individuality in animal signals but be-
cause they used different metrics there is limited prospect that we 
can benefit from the cumulative evidence of these studies. The lack 
of a commonly used identity metric is a major impediment towards 
understanding the evolution of identity signalling and indeed, the 
evolution of individuality.

Here, we review previously developed univariate (quantifying 
individuality within a single trait) and multivariate metrics (quan-
tifying individuality across multiple traits) that have been used to 
quantify individual identity information in signals and we test their 
performance on simulated and empirical datasets. In particular, we 

examine the following metrics: F‐value, Potential of individual cod-
ing PIC, Beecher's information statistic HS, Information capacity HM, 
and Mutual information MI. We further evaluate the different com-
putational variants found in the literature in case of PIC and HS (see 
Table 1 and Supplement 1 for a detailed overview of metrics and 
their variants).

We compare the performance of metrics to hypothetical ideal 
identity information metric. The main principle of measuring individ-
ual identity in continuous traits is to quantify the ratio of between‐ 
and within‐individual variation (Beecher, 1982, 1989; Robisson, 
Aubin, & Bremond, 1993; Searby & Jouventin, 2004). Thus, an ideal 
individual identity metric should be expressed on a ratio scale with 
a meaningful zero value, equivalent to the situation when there is 
no between‐individual variation. Further, there is no expected upper 
limit for individuality. High between‐ to within‐individual variation 
ratio indicates easy discrimination of individuals.

The datasets for the assessment of individual identity in dif-
ferent species vary in properties such as the number of individu-
als, the number of samples per individual, the number of variables 
measured (i.e. number of individualistic traits) and the covariance 
between the multiple variables measured. Hence, we further pro-
pose that an ideal identity metric should be robust or respond 
predictably to these dataset parameters to allow meaningful com-
parisons between studies. Therefore, an ideal identity metric: (a) 
should not be systematically biased by the sampling effort, that is 
there should be no systematic effects of number of individuals and 
number of observations per individual in a study on individuality 
estimate, and the sampling should ideally only impact on precision 
of individuality estimate; and (b) in the multivariate case, it should 
well capture the intrinsic multidimensionality of identity signals. In 
particular, it should rise with number of meaningful variables be-
cause each of the uncorrelated variables can encode another level 
of individual variation. In addition, it should also decrease with 
covariance between the variables because increasing covariance 
between the variables essentially decreases the number of inde-
pendent variables. For our comparison, we gave the same weight 
to all criteria because these are very basic requirements and an 
ideal metric should fulfil all of them. In addition, we will list other 
potential pros and cons of each metric to provide a comprehensive 
evaluation of existing metrics.

We also wished to see if each of two commonly used metrics 
(Beecher's information statistic HS and discrimination score DS) 
could be converted to the other metric. We focused only on HS 
and DS metrics. DS has been used in the vast majority of past 
studies and DS has been found to correlate well with potentially 
unbiased HS in a previous study (Beecher, 1989). However, the 
previous study only tested the relationship between HS and DS 
on datasets with equal number of individuals and observations per 
individual, thus, ignoring the known biases associated with DS. 
Reliable conversion of DS into potentially unbiased HS could facil-
itate comparative analyses of results reported in past and future 
studies.
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2  | MATERIAL S AND METHODS

We used r for simulations and statistical analysis (R Core Team, 
2012). Functions to calculate identity metrics, associated functions 
and datasets are available within an IDmeasurer package. This pack-
age is available on CRAN (https​://cran.r-proje​ct.org/web/packa​ges/
IDmea​surer/​index.html) and GitHub (https​://github.com/pygmy​83/
IDmea​surer​).

2.1 | Datasets

2.1.1 | Simulated datasets

Datasets were constructed to mimic typical data on individuality 
(Figure 1). Parameters of datasets vary among studies. In particular, 
there are different numbers of individuals, observations (samples) 
per individual, variables and different covariances among variables. 
Effect of these parameters was simulated along with individuality 
within datasets. The level of individual identity in data was modified 
by changing the ratio of between‐ and within‐individual variance 
in accordance with theoretical assumptions of individual identity 
signals and previous studies (Beecher, 1989; Searby & Jouventin, 
2004). We developed r scripts involving “rnorm” and mass package 
(Venables & Ripley, 2002) “mvrnorm” function to generate the data-
sets. These functions generate random values with a given standard 
deviation around pre‐specified mean and, in “mvrnorm”, with pre‐
specified covariance.

We constructed datasets with univariate and multivariate nor-
mal distributions with parameters covering a wide range of values, 
specifically, five values for individuality (id  =  0.01, 1, 2.5, 5 and 
10), five values for number of observations per individual (o = 4, 
8, 12, 16 and 20), eight values for number of individuals (i = 5, 10, 
15, 20, 25, 30, 35 and 40). Additionally, for multivariate datasets, 
five values for covariance among variables (cov = 0, 0.25, 0.5, 0.75 
and 1) and five values for number of variables (p = 2, 4, 6, 8 and 
10). Thus, 200 and 5,000 unique parameter combinations were 
possible in case of univariate and multivariate datasets respec-
tively. Individuality (id) represents the ratio of standard deviations 

between and within individuals (id =  SDbetween/SDwithin; SDbetween 
was calculated from means for each individual and SDwithin was set 
to be SDbetween/id) (Figure 1). A single covariance (cov) value was 
used in the variance–covariance matrix to define covariances be-
tween all pairs of variables. For univariate datasets, we first gen-
erated individual means for a pre‐defined number of individuals 
(normal distribution, “rnorm” function, M = 1,000, SDbetween = 1) 
and then we generated a pre‐defined number of random obser-
vations “o” around each individual mean (normal distribution, 
“rnorm” function, mean = individual mean, SDwithin = SDbetween/in-
dividuality “id”). In the multivariate case, we first created a matrix 
representing mean individual values of variables for each of the 
individuals (multivariate normal distribution, “mvrnorm” function, 
mean for each variable = 0, variance‐covariance matrix). Variances 
on the diagonal of the covariance matrix were set equal to 1 (hence 
SDbetween = 1) and all covariances between variable pairs were set 
equal to the pre‐defined covariance “cov”. Then, we generated a 
pre‐defined number of random observations “o” around each in-
dividual and a variable mean (“rnorm” function, mean = individual 
mean, SDwithin = SDbetween/individuality “id”).

We asked how dataset parameters (i, o, p, cov, id) influenced the 
value of each identity metric. To explore this, 20 randomization cy-
cles were run for each unique combination of parameter values. For 
example, in the multivariate case, 20 * 5,000 = 100,000 independent 
datasets were generated (datasets 1–20: i = 5, o = 4, p = 2, cov = 0, 
id = 0.01; datasets 21–40: i = 10, o = 4, p = 2, cov = 0, id = 0.01; …; 
datasets 99,981–100,000: i = 40, o = 20, p = 10, cov = 1, id = 10). 
Identity metrics were calculated for each dataset.

2.1.2 | Empirical datasets

While the general performance of identity metrics was evaluated 
on simulated datasets, empirical datasets were used to evaluate the 
consistency of DS and HS metrics and reliability of HS and DS conver-
sion on real data. We used six empirical datasets from four different 
species: little owls Athene noctua (ANmodulation, ANspec) (Linhart 
& Šálek, 2017), corncrake Crex crex (CCformants, CCspec) (Budka 
& Osiejuk, 2013), yellow‐breasted boubous Laniarius atroflavus 

F I G U R E  1   Illustration of three artificial multivariate datasets that differ only in the individuality used to generate datasets. Settings for 
the function generating these datasets: i = 5, o = 10, p = 2, cov = 0, id = 0.01, 3 and 10
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(LAhighweewoo) (Osiejuk et al. unpubl. data) and domestic pigs Sus 
scrofa (SSgrunts) (Syrová, Policht, Linhart, & Špinka, 2017) (Figure 2). 
In two species – corncrakes and little owls – calls were described 
by two different sets of variables. In little owls, we described calls 
by frequency modulation by measuring fundamental frequency at 
10 measuring points evenly spread through the duration of the call 
(ANmodulation) or parameters describing the distribution of the fre-
quency spectrum such as peak frequency, minimum and maximum 
frequencies and frequencies dividing spectrum by energy content 
(ANspec). In corncrakes, we used formants (CCformants) and pa-
rameters describing the distribution of the frequency spectrum 
(CCspec) (see the Supplement 2 for detail description of empirical 
datasets). Because datasets varied with respect to the number of in-
dividuals (33–100) and the number of calls per individual available 
(10–20), we scaled all datasets down to lowest common denomina-
tor by randomly selecting individuals and calls from bigger datasets. 
Eventually, each dataset had 33 individuals and 10 calls per indi-
vidual. Each dataset also used different numbers of variables to de-
scribe the calls’ acoustic structure (ANmodulation = 11, ANspec = 7, 
CCformants = 4, CCspec = 7, LAhighweewoo = 7, SSgrunts = 10). In all 
these empirical datasets, assumptions of multivariate normality were 
tested (Korkmaz, Goksuluk, & Zararsiz, 2014), but not met. We found 
various issues on the level of univariate variables and the whole data-
set. For instance, there were issues with outliers, skewness, kurtosis 
and multimodal distributions (see Supplement 2 for univariate histo-
grams and multivariate Chi‐square Q‐Q plots). Normality issues are 
common for research studies on acoustic individual identity. Authors 

deal with normality issues by eliminating problematic variables (e.g. 
Couchoux & Dabelsteen, 2015), using nonparametric classification 
methods (e.g. Mielke & Zuberbuehler, 2013), or by relying on robust-
ness of cross‐validated DFA and Principle Component Analysis (PCA) 
towards relaxed assumptions (e.g. Mathevon et al., 2010). We used 
the last approach. If the assumptions of discriminant analysis that 
are not met the results should be less stable when using different 
sampling and hence our results should be viewed as conservative.

2.2 | Statistical analysis

The relationship between a given identity metric and each of the 
parameters was assessed graphically by plotting the mean value 
and the 95% confidence intervals of an identity metric against 
all of the modelled data parameters separately. We then used 
a one‐way ANOVA to test whether an identity metric was con-
stant across all levels of a parameter. One‐way ANOVA along with 
graphical evaluation of relationships between metrics and model 
parameters was preferred over multivariate regression because it 
simply, but adequately, addresses our main question (i.e. does the 
metric change in response to model parameter?) without the need 
to specify and compare many different multivariate regression 
models. If we found significant differences, we followed up these 
with post‐hoc Tukey tests to identify which parameter levels dif-
fered. Due to the large number of comparisons, we only reported 
comparisons of neighbouring parameter levels. We used linear and 
nonparametric loess regression to convert HS to DS and vice versa. 

F I G U R E  2   Illustration of empirical datasets. Five individuals were randomly sampled from each dataset of 33 individuals and all 10 calls 
per individual were selected. HS for a full dataset is shown. Data were centred and scaled and subjected to PCA. The first two Principal 
Components are plotted
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Loess regression identifies a function that best describes complex 
data by fitting simple models to sequential subsets of data. Its 
main advantage is that it does not require specifications of the 
function and, hence, it is suitable for modelling of complex rela-
tionships. Loess regression included the number of individuals and 
the number of observations per individual as additional predictors. 
We used Spearman correlation coefficients to quantify between‐
metric consistency of ranking individuality in datasets. Pearson 
correlations were used to assess consistency within identity met-
rics in full and partial datasets. We then used Friedman tests, fol-
lowed by a series of Wilcoxon tests (for post‐hoc comparison of 
differences between levels), to compare correlation coefficients 
obtained for each pair of the metrics.

3  | RESULTS

The comparison of available univariate and multivariate metrics to 
an ideal metric is shown in Table 2.

3.1 | Univariate metrics

All explored univariate metrics increased with increasing individual-
ity in the data. However, only PICbetweentot, PICbetweenmeans, HSnpergroup 
and HSvarcomp estimates were independent of the number of obser-
vations and the number of individuals used to calculate the metric 
(Figure 3). These general patterns were qualitatively identical when 
all simulated data were pooled or if only one of the parameters 
(number of observations, number of individuals, individuality) was 
changed at a time and the others were kept constant at the middle 
value (see Supplement 3 for detailed results including ANOVA tests).

All four sampling‐independent metrics (PICbetweentot, 
PICbetweenmeans, HSnpergroup and HSvarcomp) were highly correlated 
(Spearman correlation, all r > 0.99). HSnpergroup and HSvarcomp correctly 
converged to 0 in the case when individuality was set to be negligible 
(id = 0.01), while PICbetweentot and PICbetweenmeans converged to higher 
values (1.01 and 0.32 respectively). PICbetweentot reflects the number 
of potential individual signatures within a population in same way as 
2HS does (Beecher, 1989), and, both, PICbetweentot and 2HSnpergroup reflect 
the ratio of between‐ to within‐individual variation. Hence, conver-
gence of PICbetweentot to 1 could be also seen as desirable quality 
and meaningful value for a signal with no individuality. HSvarcomp was 
equal to 2  * HSnpergroup (see Supplement 4 for details). We further 
considered only the HSnpergroup variant in multivariate analyses.

3.2 | Multivariate metrics

The performance of multivariate identity metrics is illustrated in 
Figure 4. All metrics increased with increasing individuality. DS, HS 
and MI increased with increasing number of variables available and 
decreased with increasing covariance between variables. Only HM 
did not change in response to increasing the number of individuals. 

HS and HM did not change in response to increasing the number of 
observations per individual. These general patterns were qualita-
tively identical when all simulated data were pooled or if only one 
dataset parameter was changed at a time and others were kept con-
stant at the middle value (see Supplement 5 for detailed results in-
cluding ANOVA tests).

Despite the different response of metrics to some of the simu-
lated parameters, there was still moderate to high agreement among 
metrics about identity content in the data (Spearman correlations, 
mean r  ±  SD  =  0.82  ±  0.07; minimum r  =  0.71 for correlation be-
tween DS and MI; maximum r  =  0.95 for correlation between DS 
and HS). HS had the greatest correlations with other metrics (average 
R = 0.88). We found no advantage to using HM over HS as previously 
suggested. Instead, HM was equal to HS per variable (HM = HS/p) in 
data with zero covariance between variables. (Supplement 6).

Thus, our simulations show that HS matched the characteristics 
of the ideal metric in 6/7 cases, followed by HM (5/7), DS (4/7) and 
MI (both 3/7) (Table 1).

3.3 | Potential for removing bias in HS

We observed no significant association between HS and the number 
of individuals in the univariate case, so we investigated the origin of 
the sampling bias in the multivariate case. This bias was only present 
when data were subjected to PCA. However, PCA is required to cre-
ate uncorrelated components for HS calculation.

It is possible that the more variables measured, the more individ-
uals need to be sampled in order to reduce this bias. We therefore 
fixed the number of variables to 5, 10 and 20 (p = 5, 10, 20) and var-
ied the ratio of the number of individuals to the number of variables 
“i to p ratio” from 0.5 to 5 (“i to p ratio” = 0.5, 1, 1.5, 2, 3, 5) by using 
different numbers of individuals in our simulations (i = 3, 5, 8, 10, 15, 
20, 25, 30, 40, 50, 60, 100 depending on number of variables and “i 
to p ratio”). The number of observations per individual was set to 10. 
Individuality and covariance were both chosen randomly in each it-
eration from pre‐defined intervals used in the earlier simulations (co-
variance range = [0, 0.25, 0.5, 0.75, 1]; individuality range = [0.01, 1, 
2.5, 5, 10]). We used 100 iterations for each “i to p ratio”. HS did not 
rise significantly after the number of individuals reached at least the 
number of parameters (One‐way ANOVA F5,1794 = 7.68, p < 0.001; 
no significant differences between levels if “i to p” ≥ 1, all p > 0.132) 
(Figure 5).

3.4 | Converting DS to HS and vice versa

We used simple linear regression and non‐parametric loess regres-
sion to estimate HS based on DS and vice versa. There was a previ-
ously suggested linear relationship that had a limit of HS = 8 where 
the DS values were 100% correct discrimination (Beecher, 1989). 
Because the HS values in our original simulated datasets far ex-
ceeded 8, we generated a new set of simulated datasets with indi-
viduality ranging between 0.1 and 2 (id = 0.1, 0.25, 0.5, 0.75, 1, 1.33, 
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F I G U R E  3   Variation in univariate 
identity metrics in response to simulated 
dataset parameters: individuality, number 
of observations per individual and number 
of individuals. Means and 95% confidence 
intervals are shown. Graphs were plotted 
using all simulated univariate data pooled 
together. For the graphs with only a 
single parameter changing at a time see 
Supplement 3
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1.66, 2), covariance set to zero (cov = 0), number of iterations was 
reduced to 10 (it = 10), and other parameters were set as in previous 
models (p = 2, 4, 6, 8, 10; i = 5, 10, 15, 20, 25, 30, 35, 40; o = 4, 8, 12, 
16, 20). These settings led to HS values up to about 13 for data used 
for model building, and HS values up to about 14 in the case of data 
used for model testing. These values are much closer to 8 and also 
much closer to HS values reported from nature.

Loess models took into account the number of observations per 
individual and the number of individuals. We compared the loess 
conversion and linear conversion models of DS and HS. In general, 
loess estimates were closer to the ideal prediction (intercept  =  0, 
beta = 1) and the loess model reduced the error of both DS and HS 
estimates to about a half compared to linear estimates (Figure 6). 
Both HS estimates were underestimated for high values of HS. The 
ceiling value is clearly apparent for linear estimates of HS. It is still 
visible in the case of loess estimates but loess predictions remain 
reasonably good up to about HS = 10.

3.5 |  Correlations between calculated and 
estimated metrics

We were further interested in how HSest and DSest might represent 
HS and DS of a particular sample of individuals or HSfull and DSfull of 
the whole population. For this purpose, we first generated 50 full 
datasets with different identity levels representing 50 hypothetical 
populations of different species. Each dataset comprised 40 indi-
viduals, 20 calls per individual and 10 parameters. For these data-
sets, individuality was set randomly ranging between 0.2 and 2 (0.1 
increments), and the covariance was set randomly ranging between 
0.2 and 0.8 (0.1 increments). These settings generated datasets with 
HSfull values that ranged from 0.22 to 9.89 (M  ±  SD: 4.72  ±  2.95). 
Then, we repeatedly subsampled full datasets to get partial datasets 
which simulated different sampling of the population. We subsam-
pled 5–40 individuals and 4–20 calls per individual per dataset in 

F I G U R E  4   Multivariate identity metrics in response to simulated dataset parameters: individuality, covariance between variables, 
number of variables, number of observations per individual and number of individuals. Means and 95% confidence intervals are shown. 
Graphs were plotted using all simulated multivariate data pooled together. For the graphs with only a single parameter changing at a time 
see Supplement 4
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each of total 20 iterations. We also repeatedly subsampled our em-
pirical datasets. We subsampled 5–33 individuals and 4–10 calls per 
individual per dataset in each of total 20 iterations. The number of 
parameters was not randomized – we always kept the original num-
ber of variables.

In simulated datasets, HS and HSest were correlated almost per-
fectly with each other and with HSfull (all average Pearson r > 0.97). 
There was no difference among the correlation coefficients from 
correlations between HSfull, HS and HSest (Friedman Chi Square = 3.6, 

p = 0.165). In empirical datasets, HS calculated on partial datasets 
still reflected the HSfull almost perfectly (average Pearson r = 0.99). 
While HSest reflected HS of partial dataset (average Pearson r = 0.90) 
and HSfull (average Pearson r = 0.88) slightly worse, it remained a rea-
sonable fit. However, HSest did not reflect HSfull as precisely as it did 
HS (Friedman Chi Square = 33.6, p < 0.001, post‐hoc test: HS ‐ HSfull 
vs. HSest ‐ HSfull, p < 0.001).

DS in simulated datasets was almost perfectly correlated 
with DSest (average Pearson r  =  0.99). Although the relationship 
between DS in full datasets (DSfull) and DS and DSest was signifi-
cantly worse (Friedman Chi Square = 40.0, p < 0.001; both post‐
hoc tests: p  <  0.005), these associations remained strong (DSfull 
and DS: average Pearson r = 0.95; DSfull and DSest: average Pearson 
r  =  0.96). In empirical datasets, the correlation between DS and 
DSest was lower than in case of artificial datasets (average Pearson 
r = 0.91). DS and DSest of partial datasets had comparable correla-
tions to DSfull (DSfull and DS: average Pearson r = 0.88; DSfull and 
DSest: average Pearson r = 0.86). Thus, the performance of DS and 
DSest to reflect each other or DSfull did not differ (Friedman Chi 
Square = 0.9, p = 0.638).

4  | DISCUSSION

We provided an overview of the metrics used to quantify indi-
vidual identity in animal signals in order to identify the best 
method for reporting individuality in animal signals. Biases as-
sociated with some of the commonly used metrics, and the use 
of different metrics across studies, make it difficult to compare 
results and integrate the accumulated knowledge from the nu-
merous published studies on individual identity in animal signals. 

F I G U R E  5   HS and “i to p ratio” (number of individuals/ number 
of variables). HS was understimated if there were fewer individuals 
than variables. Means and 95% confidence intervals are shown
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We show that the assessment of individual identity is relatively 
straightforward when considering a single trait (univariate case). 
Both, PIC (PICbetweentot) and HS (HSnpergroup) performed according to 
expectations. Multivariate identity metrics based on direct quan-
tification of between‐ to within‐individual variation ratios (HS, HM) 
performed better than the metrics derived from discrimination 
of individuals (DS, MI). We confirmed sampling‐associated biases 
where they were reported previously (DS), but we found them 
even in metrics that had been developed to overcome these biases 
(HS, MI). We also described yet unrecognized issues (the need to 
assess dimensionality for HM to quantify the total individuality of 
a signal). We further found that some metrics created values that 
were so close that they could be viewed as redundant (PIC and 
HS; HM and HS) and using them simultaneously brings unnecessary 
confusion to the field.

Based on our review and systematic analysis, we suggest HS 
should be routinely reported as the standard individual identity met-
ric because it performed closest to an ideal identity metric in the 
univariate, as well as in the multivariate case. The partial bias in HS 
caused by the number of individuals in a study could be removed 
by having at least the same number of individuals as the number of 
variables. HS was the most consistent metric and correlated the best 
with DS and other identity metrics. Further, HS could be converted 
reliably into DS if needed.

The robustness of HM towards sampling bias (number of indi-
viduals, number of observations, as well as the number of variables 
and covariance) is an attractive feature. However, as we show, HM 
quantifies identity information per variable and not the identity in-
formation of the entire signal. It is necessary to know the effective 
number of variables to calculate the total identity information of a 
signal (i.e. if there is perfect covariance between the variables, the 
effective number of variables is 1 no matter how many variables are 
used), which may be difficult to assess. On the other hand, HM uses 
distances (similarity scores) of samples to calculate individuality and, 
hence, it could be potentially used not just with Euclidean distances 
(Searby & Jouventin, 2004, this study) but also together with other 
various methods assessing similarity (e.g. cross‐correlation, dynamic 
time warping or string edit distances).

Mutual information (MI) is derived from a confusion matrix of dis-
crimination analysis and we show it has similar shortcomings as dis-
crimination scores. Our results that found systematic biases in MI are 
in line with previous studies that investigated measures of clustering 
for various machine learning purposes where potentially unbiased 
variants of MI are constantly searched for (e.g. Amelio & Pizzuti, 2017).

4.1 | Identity metrics in comparative analyses

We show that biases associated with DS (the most often used met-
ric) and HS (the best metric) are not necessarily fatal for compari-
sons of different published studies because HS and DS values that 
are based on an entire population or subsamples from a popula-
tion were well correlated in both simulated and empirical datasets. 

Additionally, the conversion of sample‐biased DS values into less‐
biased HS values could allow better comparisons between studies. 
Both HS and HM values were previously found to correlate well with 
DS (Beecher, 1989; Searby & Jouventin, 2004). We extend previous 
findings for HS (Beecher, 1989) to situations with unequal sampling 
and we show it is possible to convert between HS and DS with an 
acceptable amount of error even when datasets differ in the num-
ber of individuals and observations per individual, and have impor-
tant issues associated with multivariate normality (Supplement 2). 
Discriminant analysis (DA) and Principal component analysis (PCA) 
used for DS and HS calculations both assume multivariate normality 
for optimal results. While using these methods with non‐normal data 
cannot be, in general, recommended, relatively high correlations be-
tween our metrics in empirical datasets suggest that DA and PCA 
scores were quite robust to these normality issues. Discrimination 
and dimensionality reduction analytical techniques that are able to 
handle normal and non‐normal data definitely need to be considered 
in future individual identity studies.

4.2 | Future individual identity metrics

We hope that our study will stimulate further discussions about how 
individual identity should be properly measured. Although we sug-
gest that HS should be generally used to quantify individuality, dif-
ferent metrics or more complex approaches might be required for 
particular interesting questions. For example, HS can only provide 
a population estimate of individual identity. Researchers might be 
interested in whether distinctiveness of individuals increases dur-
ing ontogeny (Syrová et al., 2017). In this case, discrimination scores 
can be reported for each individual, thus making statistical evalu-
ation possible. Furthermore, separate assessments of within‐ and 
between‐individual variations when calculating PIC might be use-
ful to test hypotheses about which of the two has been selected 
for. Within‐individual variation could be reduced by, for example, 
ritualized behaviour while between‐individual variation could be in-
creased through, for example, morphological variation in structures 
producing or carrying the signal (e.g. Sheehan & Nachman, 2014). 
The dimensionality of identity signals might be an important factor 
for recognition processes (Trunk, 1979) and evolution could favour 
low dimensional signals. Paralleling the distribution of individuals in 
space (territoriality, living in colonies), individual signatures within 
a population, too, could have random, clumped, or regular distribu-
tions depending on the mechanisms behind individual distinctive-
ness and the degree of plasticity of identity signals.

We evaluated the efficacy of all metrics within the acoustic mo-
dality only. It is increasingly recognized that signals employ multiple 
modalities (Partan, 2013; Partan & Marler, 1999). All of the identity 
metrics discussed here could be, in principal, used in visual or chem-
ical domains as well. HS has an advantage that it could be used both 
for discrete traits, such as colour variants, presence of particular al-
leles or chemicals, and for continuous traits such as size of visual pat-
terns, duration of calls, etc. (Beecher, 1982, 1989). However, identity 
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information outside the acoustic domain has been rarely quantified 
and meaningful comparison of individual identity across modalities 
remains a challenge for the future.

It is likely that automatic data collection and analysis techniques 
will be increasingly applied for various recognition tasks, including 
individual recognition (Elie & Theunissen, 2018; Stowell, Petrusková, 
Šálek, & Linhart, 2019). While these methods will allow studying 
individual identity signalling on unprecedented scales and sample 
sizes, the resulting classification accuracy scores will be analogous 
to the discrimination score, with similar positives and drawbacks. 
However, many different feature sets, pre‐defined or automatically 
derived from data, as well as many different classification methods 
could be combined to test for the robustness of identity signals and/
or to mimic and test for different alternatives of possible real recog-
nition processes (Elie & Theunissen, 2018).

5  | CONCLUSION

We suggest that, at the current state of knowledge and methodol-
ogy development, HS should be generally reported as the “golden 
standard” individual identity metric to allow the best comparison 
of individuality in signals across different studies. Given that HS 
may not be sufficient in all cases, we encourage further research 
to develop new metrics to quantify identity information in signals. 
However, new metrics should always be appropriately assessed and 
their performance directly compared to the best existing metrics. 
We provide datasets and scripts that should help to assess individ-
ual identity information in animal signals and benchmark the future 
metrics.
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