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Abstract
In an increasingly anthropic world, humans have profound impacts on the distribution 
and behaviour of marine fishes. The increased human presence has modified fishes’ 
antipredator behavioural responses, and consequently flight decisions, as a function 
of their changed perceptions of risk. Understanding how fish react to human pres‐
ence can help identify the most vulnerable functional groups/species and estimate 
impacts caused by human disturbance. Shoal and body size are known to influence 
fish flight initiation distance (FID; the distance between the predator and prey when 
the prey begins to escape); however, few studies attempt to test the moderators of 
these relationships. Here, we present a comprehensive meta‐analysis evaluating FID 
of fish in response to human presence. Specifically, we investigated six candidate 
moderators that could influence the relationship between FID with shoal and body 
size. Our results showed that individual fish size was strongly and positively corre‐
lated with FID and the most important moderator that explained the variance in in‐
dividual body size‐FID relationship was shoaling behaviour. However, and somehow 
surprisingly, we detected no significant relationship between shoal size and FID. We 
discuss how these results can inform the development of fish conservation strategies 
and ultimately assist in the management of marine protected areas.

K E Y W O R D S

antipredator behaviour, economic escape theory, fish size, flight initiation distance, shoal size

www.wileyonlinelibrary.com/journal/faf
mailto:﻿
https://orcid.org/0000-0002-0487-8019
https://orcid.org/0000-0003-0606-5860
https://orcid.org/0000-0001-5793-9244
https://orcid.org/0000-0002-2743-797X
mailto:﻿
https://orcid.org/0000-0001-6120-1103
mailto:diogosamia@gmail.com
mailto:bgeffroy@ifremer.fr


818  |     SAMIA et al.

1  | INTRODUC TION

Avoiding predators is an important part of an animal's life that has 
profound influences on morphology, metabolism and behaviour 
(Arnett & Kinnison, 2017; Dalton, Tracy, Hairston, & Flecker, 2018; 
Ferrari et al., 2015). Avoiding predators may involve camouflage or 
other physiological mechanisms (e.g. toxicity), but it commonly oc‐
curs by escaping (Langridge, Broom, & Osorio, 2007). While often 
effective, fleeing a predator is not without costs because fleeing in‐
terrupts the current activity of the animal, and has both energetic 
and time costs (Blanchard, Blanchard, Rodgers, & Weiss, 1990; 
Ydenberg & Dill, 1986).

The decision when to flee is based on a cost–benefit trade‐off. 
Prey should have a greater flight initiation distance (FID—the dis‐
tance between the predator and prey when the prey begins to es‐
cape) if they face increased risk or if energetic or opportunity costs 
of leaving are low (Cooper & Frederick, 2007; Ydenberg & Dill, 1986). 
FID is one of the most commonly studied variables in the animal anti‐
predatory literature (Cooper & Blumstein, 2015; Geffroy, Sadoul, 
& Ellenberg, 2017; Samia, Blumstein, Blumstein, Stankowich, & 
Cooper, 2016) and sheds light on species’ cognitive abilities and the 
evolutionary history of predator–prey interactions (Blumstein, 2006; 
Cooper, Pyron, & Garland, 2014; Møller & Erritzøe, 2014; Samia, 
Nakagawa, Nomura, Rangel, & Blumstein, 2015a). Additionally, due 
to its ease of use and conceptual clarity, FID is an attractive metric 
to routinely and straightforwardly evaluate the capacity of prey an‐
imals to avoid predators. Consequently, it has recently become used 
to evaluate anthropogenic impacts on fishes (Bergseth, Williamson, 
Williamson, Russ, Sutton, & Cinner, 2017; Geffroy et al., 2018; 
Januchowski‐Hartley, Graham, Cinner, & Russ, 2015; Sbragaglia 
et al., 2018).

In fishes, FID was first quantified in Atlantic Salmon (Salmo salar, 
Salmonidae) and brook trout (Salvelinus fontinalis, Salmonidae) based 
on underwater observations (Keenleyside, 1962). About 10  years 
later, the first experimental FID study in controlled conditions was 
performed on zebrafish (Danio rerio, Cyprinidae) (Dill, 1974). Since 
then, a plethora of studies have been conducted to investigate FID 
in fishes and assess the influence of different factors on fishes’ re‐
sponse to threats, most notably group (shoal) size and body size.

An important intrinsic driver of FID of fish is body size. Several 
studies have identified the positive link between individual fish 
size and FID in exploited populations (Benevides, Nunes, Costa, & 
Sampaio, 2016; Gotanda, Turgeon, & Kramer, 2009; Januchowski‐
Hartley, Graham, Feary, Morove, & Cinner, 2011; Sbragaglia et al., 
2018). A seemingly reasonable assumption to explain this correlation 
involves fish fitness‐related traits (i.e. age and size; Uusi‐Heikkilä et al., 
2015). First, larger fish are often the preferential target of fisherman; 
thus, they are more responsive to the threat (Johnston, Arlinghaus, & 
Dieckmann, 2013; Tsikliras & Polymeros, 2014). Second, larger fish are 
generally older, so assuming a learning mechanism, they have more ex‐
perience with threats (Samia et al., 2016). Third, the relative fitness (in 
terms of reproductive output) is much higher in larger individuals than 

smaller ones. For example, a large female produces disproportionally 
more offspring than the same body mass’ worth of smaller females 
(Barneche, Robertson, White, & Marshall, 2018) and also produces 
larvae with a greater chance of survival (Birkeland & Dayton, 2005). 
Thus, the correlation between FID and body size is of paramount im‐
portance in characterizing fish response towards humans. Protecting 
old and big fishes has become a priority for fisheries management 
and conservation policies (Collette et al., 2011; Gwinn et al., 2015; 
Jørgensen et al., 2007).

In social animals, the accuracy of a decision is expected to in‐
crease with number of individuals within a group. It happens 
because individuals in groups have a higher ability to gather and in‐
tegrate information than individuals alone (Couzin, 2009). In fishes, 
the “many eyes” hypothesis (Lima, 1995) predicts that fishes in larger 
groups/shoals would escape sooner (have a larger FID) since hav‐
ing more eyes should increase the probability of detecting threats 
(Domenici & Batty, 1997; Seghers, 1981; Semeniuk & Dill, 2005). 
Indeed, collective vigilance in fish shoals has been shown to signifi‐
cantly improve detection (Ward, Herbert‐Read, Sumpter, & Krause, 
2011). However, the evidence of this occurring in situ is mixed 
(e.g. Januchowski‐Hartley et al., 2011) and a previous meta‐analy‐
sis identified a weak negative effect of shoal size on FID in fishes 
(Stankowich & Blumstein, 2005). Therefore, the extent to which FID 
correlates with shoal size and how it generalizes across fish species 
remains unclear.

In addition to the negative impacts of harvesting activities, some 
fish populations are constantly exposed to a massive presence of 
tourists which may create a suite of physiological and behavioural 
consequences (Geffroy, Samia, Bessa & Blumstein, 2015; Geffroy 
et al., 2018). Indeed, the popularity of both snorkelling and diving 
activities has massively increased over the past several decades, 
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and there are an estimated 22 million divers worldwide (Musa & 
Dimmock, 2013). Recent studies demonstrate that SCUBA diving 
has impacted fish for the past 60 years (Rowe & de Santos, 2016) 
and spearfishing has also increased, often preferentially targeting 
the largest individuals (Giglio, Bender, Zapelini, & Ferreira, 2017). 
With increasing anthropogenic impacts, coastal ecosystems, partic‐
ularly rocky and coral reef, are arguably the most impacted by both 
divers and fishers. Traditional methods employed to quantify the 
human “footprint” on fish populations focus on fish biomass assess‐
ment at both global (Cinner et al., 2018) and local (e.g. Goetze et al., 
2017) scales. However, biomass estimates are often highly variable 
(McClanahan, Graham, Calnan, & MacNeil, 2007), which can mask 
both positive effects of management and lack of effect or compli‐
ance. Nevertheless, if FID varies consistently with both individual 
size and shoal size in different fish species, it has the potential to 
be a good proxy for the management status or intensity of human 
disturbance of a focal population (Benevides, Pinto, Nunes, & A. C. 
C., & Sampaio, C. L. S., 2018; Goetze et al., 2017).

Thus, an understanding of how fish react to human presence can 
be valuable information to help manage fish populations. Here, we 
present a comprehensive meta‐analysis evaluating FID of fish in re‐
sponse to humans, taking advantage of the surge of recent studies 
on this topic. We aimed to understand the body size and the shoal 
size effect on fish escape behaviour. Based on existing literature, 
we predicted that both body size and shoal size would have positive 
relationships with FID (i.e. larger individual fish would have longer 
FIDs and fish occurring in larger shoals will have longer FIDs). We 
also investigated key traits related to species’ morphology, ecology, 
life history and natural history that should modulate these relation‐
ships (see hypotheses in Table 1). Finally, we discuss our findings in a 
context of increased human presence on marine coastal ecosystems, 
focusing on identifying fishes that are most vulnerable.

2  | METHODS

2.1 | Literature survey

We used the Web of Science and Google Scholar databases to 
search for papers published before 1 April 2016. We used the fol‐
lowing terms in our search in these databases: “fish*” AND (“flight 
initiation distance” OR “flight distance” OR “escape distance” OR 
“approach distance” OR “flushing distance” OR “response distance”). 
We checked all references of the retained papers to identify studies 
not located by our keywords survey. We also searched for relevant 
papers cited by the main reviews about escape theory (Cooper & 
Blumstein, 2015; Stankowich & Blumstein, 2005; Ydenberg & Dill, 
1986). Non‐published data were also included in the meta‐analysis 
(see Appendix S1). The inclusion criterium was that studies must 
have tested the effect of body size and/or group/shoal size on FID 
of fishes approached by humans. A PRISMA diagram describing our 
literature search is available in Appendix S2. The data set of the fish 
individual body size‐FID meta‐analysis consisted of 131 effect sizes 
from 11 studies across 31 species distributed across 12 families 

(Appendix S1). The group size‐FID meta‐analysis consisted of 62 
effect sizes from 5 studies across 22 species distributed across 7 
families (Appendix S1).

2.2 | Estimating effect sizes

We used Pearson's product‐moment correlation coefficient, r, as 
our measure of effect size. Here, r represents the magnitude of 
the fish individual body size‐FID relationship and the fish shoal 
size‐FID relationship. Positive r‐values represent a positive body 
size‐FID relationship (i.e. that larger individuals flee sooner from 
humans than small individuals) and a positive shoal size‐FID re‐
lationship (i.e. that individuals in larger shoals flee sooner from 
humans than solitary individuals or those in smaller shoals). 
Conversely, negative r‐values represent a negative individual body 
size‐FID relationship (i.e. that smaller individuals flee sooner from 
humans than larger individuals) and a negative shoal size‐FID rela‐
tionship (i.e. that solitary individuals or those in smaller shoals flee 
sooner from humans than individuals in larger shoals). When raw 
data were not available to directly calculate r, we calculated r in the 
following order of preference from published statistical results: 
1) published correlation coefficients; 2) t or F statistics; or 3) the 
exact P‐values reported with sample sizes (Koricheva, Gurevitch, & 
Mengersen,2013). We contacted authors directly for missing data 
(see Acknowledgements for details). In the ecological literature, r‐
values of 0.1, 0.3 and 0.5 are usually considered to reflect small, 
medium and large effect sizes, respectively (Cohen, 1992; Jennions 
& Møller, 2002). For analysis, r‐values were transformed to Fisher's 
z to improve normality of data (Koricheva et al., 2013).

We used the raw data to calculate the effect sizes from 
Januchowski‐Hartley's studies (Januchowski‐Hartley, Graham, 
Cinner, & Russ, 2013; Januchowski‐Hartley et al., 2011; Januchowski‐
Hartley, Nash, & Lawton, 2012). We therefore opted to include only 
those effect sizes with N ≥ 10 to avoid incorporating into the meta‐
analysis effect sizes that were not well supported. Unlike fixed‐effect 
meta‐analysis, random‐effect meta‐analysis (like the one performed 
here; see below) tends to homogenize the weight of individual effect 
sizes on the overall mean effect size independently of their sample 
size (Borenstein, Hedges, Higgins, & Rothstein, 2009; Koricheva et 
al., 2013). By excluding observations with N < 10, we avoid incorpo‐
rating noise into the analysis, and thus, our results should be viewed 
as conservative.

2.3 | Meta‐analysis

We used multilevel mixed‐effects meta‐analysis to test for both 
overall effect sizes and the importance of our predictors (Nakagawa 
& Santos, 2012). The overall effect sizes (i.e. mean of the effect 
sizes weighted by the inverse of their variance) were considered sig‐
nificant if their 95% confidence intervals (CI) did not include zero 
(Koricheva et al.,2013).

We used model selection to determine which random factors 
should be included in each meta‐analysis (Nakagawa & Santos, 2012). 
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We controlled for non‐independence of effect sizes within studies 
by including “study identity” as a random factor in the body size‐FID 
model (Appendix 3). Data could exhibit non‐independence caused 
either by phylogenetic inertia or by multiple estimates per species, 
and the model selection showed that inclusion of “phylogeny” and/
or “species identity” as additional random effects did not improve the 
model (Appendix 3). Indeed, a model without random factors was the 
most parsimonious for the group size‐FID meta‐analysis (Appendix 3).

The phylogenetic tree of the species was implemented using 
http://phylot.bioby​te.de/index.html based on the most recent tax‐
onomy available in NCBI (https​://www.ncbi.nlm.nih.gov/guide/​
taxon​omy/). When a species in our data set was not included in this 
broad phylogeny, we used a closely related (congeneric) species as 
a substitute (Garamszegi, 2014 ). Species were included into a poly‐
tomic clade when the relationship among species was unknown 
(Garamszegi, 2014). The trees were pruned using the R package pi‐
cante 1.6–2 (Kembel et al., 2010). The phylogenetic tree of the taxa 
included in the study is provided in Appendix 4.

We used I2 index as a measure of heterogeneity in the effect 
sizes in which the value represents the proportion of total variation 
in data that is not due to sampling error (0%—all sampling error; 
100%—no sampling error) (Higgins, Thompson, Deeks, & Altman, 
2003). We used an extended version of I2 that partitions the total 
heterogeneity among different sources: variation explained by study 
identity and by the residual variation (i.e. that which remained to 
be explained by the predictor variables; (Nakagawa & Santos, 2012). 
We calculated the degree of phylogenetic signal in our effect size 
estimates using the phylogenetic heritability index, H2, which is the 
variance attributable to phylogeny in relation to the total variance 
expected in the data (Nakagawa & Santos, 2012). When the unit 
of analysis is species, H2 is equivalent to Pagel's λ (Pagel, 1999), in 
which higher values are associated with stronger phylogenetic sig‐
nals. Primary studies can suffer from publication bias, where stud‐
ies with low sample size are more prone to be rejected due to their 
higher probability of not finding significant effects (Egger, Smith, 
Schneider, & Minder, 1997; Koricheva et al., 2013). We checked for 
publication bias using Egger's regression, in which intercepts signifi‐
cantly different from zero suggest potential publication bias (Egger 
et al., 1997). To overcome the non‐independent nature of our data, 
we also applied the Egger's regression test on the meta‐analytic re‐
siduals (Nakagawa & Santos, 2012). Analyses were conducted using 
the metafor R package v.2.0–0 (Viechtbauer, 2010).

2.4 | Moderators

A growing body of literature explains how species’ morphology, life‐his‐
tory and natural history traits, as well as environmental and ecological 
traits, could impact the anti‐predatory response of animals (Blumstein, 
2006; Samia et al., 2016; Samia, Møller, & Blumstein, 2015b; Samia, 
Nakagawa, et al., 2015a). Here, we focused on six factors that we hy‐
pothesize that could impact the magnitude and direction of both indi‐
vidual body size‐FID relationship and shoal size‐FID relationship, namely 
species’ shoaling behaviour (solitary vs. grouped), mean body size (cm), 

longevity (years), species’ trophic level (continuous variable varying from 
2 to 4: the lower the number, the more basal is the species in a trophic 
chain), species’ habitat use (demersal vs. pelagic) and protection status 
of the area (populations inside vs. outside protected areas). See Table 1 
for rationale for each moderator. The variables shoaling behaviour, body 
size and protected area data were obtained from the primary papers. 
The remaining information was extracted from the FishBase website 
(http://www.fishb​ase.org). Importantly, multicollinearity was not an 
issue for our selected moderators (variance inflation factors  <  1.15, 
below the suggested threshold of 3, (Zuur, Ieno, & Elphick, 2010).

Previous evidence shows that a predator's approach speed and 
starting distance (i.e. predator–prey distance when the approach be‐
gins) could affect FID (Blumstein, 2003; Cooper, Samia, & Blumstein, 
2015 ; Samia, Nomura, & Blumstein, 2013). Numerous primary 
studies did not report these parameters, while those that did stan‐
dardized approach speed and starting distance at a fixed value. 
For those studies providing the information, we detected low vari‐
ation for both the approach speed (individual body size‐FID meta‐
analysis = 64.00 ± 1.26 cm/s (mean ± s.e.), N = 120; shoal size‐FID 
meta‐analysis: 76.78 ± 0.64 cm/s, N = 59) and the starting distance 
used by experimenters (individual body size‐FID meta‐analysis: 
8.22 ± 0.22 m, N = 67; shoal size‐FID meta‐analysis: 7.91 + 0.09 m, 
N = 55). Furthermore, separate meta‐regressions between the effect 
size and both approach speed and starting distance showed absence 
of an effect (individual body size‐FID meta‐analysis—approach speed: 
b = –0.006, p = 0.633, starting distance: b = 0.008, p = 0.876; shoal 
size‐FID meta‐analysis—approach speed: b = –0.004, p = 0.597, start‐
ing distance: b = –0.039, p = 0.165). These results imply that methodi‐
cal differences among studies were not important to explain variation 
in the data and were thus not included in our statistical models.

2.5 | Multimodel inference

We used a multimodel inference approach based on Akaike's criteria 
corrected for small sample size (AICc) (Burnham & Anderson, 2002). 
To calculate the relative importance of each predictor, we first as‐
sessed the relative strengths of each candidate model by calculat‐
ing its Akaike weight, to identify the most parsimonious model. A 
constant term (intercept) was included in all models. We estimated 
the importance of a predictor by summing the Akaike weights of all 
models in which that candidate variable appeared. This allowed to 
rank predictors in order of importance (Burnham & Anderson, 2002). 
We finally used a model averaging approach to estimate model pa‐
rameters (Burnham & Anderson, 2002). Multimodel analyses were 
conducted using the MuMIn R package v. 1.40.0 (Barton, 2014).

3  | RESULTS

3.1 | Meta‐analysis of the effect of individual body 
size on flight initiation distance of fish

Overall, individual fish size was strongly and positively correlated 
with FID (Fisher's z = 0.777, CI = 0.518 – 1.036, Figure 1). We found 

http://phylot.biobyte.de/index.html
https://www.ncbi.nlm.nih.gov/guide/taxonomy/
https://www.ncbi.nlm.nih.gov/guide/taxonomy/
http://www.fishbase.org
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considerable variation among effect sizes, with most of them having 
some variation that was explained by moderators (I2total = 92.99%, 
I2studies = 12.09%, I2residual = 80.90%). The amount of heterogeneity 
found matches with that found in most ecological and evolutionary 
studies (Senior et al., 2016). There was a weak phylogenetic signal in 
the relationship between body size and FID (H2 = 2.92%). We found 
no evidence that potential publication bias affected the results 
(Egger's regression of effect sizes: Intercept = –1.256, p  =  0.250; 
Egger's regression of meta‐analytic residuals: Intercept = –0.902, 
p = 0.397; Figure 2).

The multimodel inference indicated that shoaling behaviour was 
the most important predictor of the magnitude of body size‐FID re‐
lationship (Table 2). Species that shoal display a stronger and more 
positive individual body size‐FID relationship compared to solitary 
species (Table 2 and Figure 3). The importance index of shoaling be‐
haviour was two times larger than the second most important vari‐
able, the species’ body size (Table 2, Figure 3). Species’ body size 

was followed by longevity, trophic level, environment and protected 
area with modest differences in their importance indexes (Table 2, 
Figure 3).

3.2 | Meta‐analysis of the effect of group size on 
flight initiation distance of fish

We found that shoal size had no effect on fish FID (Fisher's 
z = 0.027, CI = –0.037 – 0.092, Figure 4). The I2 index indicated no 
variation among effect sizes, leaving no variation to be explained 
by moderators (I2

total = 0%, I2residual = 0%). In fact, only two of 62 
effect sizes differed significantly from zero (Figure 4). The absence 
of residual variation in the shoal size meta‐analysis makes it unnec‐
essary to further explore the potential effect of moderators. There 
was no phylogenetic signal in the relationship between shoal size 
and FID (H2 = 0%). We found evidence of publication bias in the 
group size‐FID meta‐analysis (Egger's regression of effect sizes: 

F I G U R E  1  Forest plot of the body 
size‐FID effect sizes. Effect sizes are 
shown in ascending order. Filled circles 
with horizontal lines represent effect 
size ± 95% confidence intervals

Overall effect size
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Intercept = –1.177, p < 0.001; Egger's regression of meta‐analytic 
residuals: Intercept = –1.177, p < 0.001; Figure 2).

4  | DISCUSSION

Predator avoidance has a profound effect on individual fitness by 
allowing animals to escape from potential predators, including hu‐
mans. Our first meta‐analysis revealed that in almost all species 
investigated, FID was strongly and positively correlated with body 

length. Shoaling behaviour was the most important predictor of the 
individual body size‐FID relationship, with solitary species being less 
affected by individual size in their escape response compared to 
more gregarious species. Finally, our meta‐analysis found no effect 
of shoal size on FID of fish. Interestingly, despite the large number of 
species studied, the results of shoal size showed absence of hetero‐
geneity in data, which suggest highly conserved phenomena across 
species (Senior et al., 2016).

The positive relationship between body size and FID has been 
reported in birds (Møller, Samia, Weston, Guay, & Blumstein, 2014; 
Møller, Stokke, & Samia, 2015; Samia, Nakagawa, et al., 2015a) and 
lizards (Samia et al., 2016), particularly in unexploited or undisturbed 
populations (Samia, Nakagawa, et al., 2015a). Yet it is important to 
realize that predator avoidance strategy is highly species‐specific 
(Domenici, 2010; Hodge et al., 2018), and while fish size is a rea‐
sonably good predictor of FID, various confounding factors can 
influence escape abilities. While experience accumulated with age 
(i.e. through learning) might partly explain why bigger fish flee at a 
greater distance (Kelley & Magurran, 2003), we could also expect 
that larger prey would have tolerated closer approach from preda‐
tors than small prey, at both intra‐ and inter‐specific levels. Life‐his‐
tory theory predicts that as reproductive value increases, risk‐taking 
decreases (Cooper & Frederick, 2007). For example, fish reproduc‐
tive potential rises markedly with size in females, when consider‐
ing energy accumulated within eggs and their number (Barneche et 
al., 2018). Hence, the higher the reproductive output (and thus, the 
size), the higher the FID. Many alternative hypotheses have been 
highlighted to explain why larger fish flee at a greater distance than 
smaller fishes (Domenici, 2010). These hypotheses could be directly 
linked to the long‐time evolutionary arms race between predators 
and prey, where morphological defences such as armour evolved in 
response to greater predation risk (Hodge et al., 2018), or they could 
be linked to energy requirements where smaller fish must act bolder 
to obtain food, or smaller fish pay a relatively higher opportunity 
cost for leaving—particularly if they are successfully foraging (Dill, 
1990; Grand & Dill, 1997; Paglianti & Domenici, 2006; Polverino, 
Bierbach, Killen, Uusi‐Heikkili, & Arlinghaus, 2016). At a shorter 
time scale, larger (and older) fish might also have developed greater 
escape reactions because they have been longer exposed to fish‐
ing pressures (Biro & Post, 2008; Johnston et al., 2013; Tsikliras & 

F I G U R E  2  Funnel plots of (a) body size‐FID and (b) group size‐
FID meta‐analyses using both the effect sizes and the meta‐analytic 
residuals [Colour figure can be viewed at wileyonlinelibrary.com]

Predictor Levels Estimate SE z‐value Importance

Intercept   0.507 0.494 1.03  

Shoaling behaviour Grouped 0.362 0.185 1.97 0.67

Species body size   0.086 0.105 0.81 0.32

Longevity   –0.213 0.314 0.68 0.30

Trophic level   0.450 0.709 0.63 0.29

Environment Pelagic –0.094 0.204 0.46 0.27

Area protection status Protected –0.022 0.150 0.14 0.25

Note: Estimates are average coefficients of the model, their associated standard error (SE) and the 
importance of each factor in explaining species responses to human disturbance (the closer than 1, 
the most important the factor).

TA B L E  2   Summary of the multimodel 
inference conducted to explain variation 
in the body size‐FID relationship in fish

www.wileyonlinelibrary.com
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Polymeros, 2014). To date, no single factor explains the intra‐spe‐
cific correlation between FID and fish size, and it may have emerged 
from the interaction of several variables.

Shoaling and habitat preferences were recently recognized as 
two major ecological traits that balance the evolutionary trade‐offs 
in antipredator morphological adaptations in fishes (Hodge et al., 
2018). Here, we also show that shoaling behaviour is of primary im‐
portance to explain the strength of the relationship between individ‐
ual body size and FID, while habitat preference is a relatively minor 
factor in explaining this relationship. The size of individuals of soli‐
tary species has less effect on escape response than individual size 
in group‐living species. It is known that social group size positively 
influences vigilance in animals (Lima, 1995; Pitcher, 1986; Ward et 

al., 2011). Yet, the absence of a group size effect on FID, but the 
major effect of grouping on the body size‐FID relationship suggests 
that being gregarious (or not) is more important in explaining fish 
escape response than the size of the group per se. Another interpre‐
tation is that there is an optimal balance between two forces acting 
on group size. Both dilution effect and detectability by the predators 
increase with group size, making a larger group more conspicuous 
to predators, but although individuals therein are less likely to be 
targeted individually, throughout their lifetime, they are attacked 
more often. Therefore, even if vigilance adds just a small contri‐
bution to survival, during an individual's life span, it becomes quite 
important, contributing to safety perception (Dehn, 1990). Solitary 
or paired species often rely on morphological defences, such as 

F I G U R E  3  Effects of (a) shoaling 
behaviour, (b) species’ body size, (c) 
longevity, (d) trophic level, (e) environment 
and (f) area protection status on the body 
size‐FID relationship. Plots (a), (e) and (f) 
show mean ± 95% confidence intervals. 
The number of species tested at each 
factor level is shown in the bottom of 
plots [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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seen in butterflyfishes (Hodge et al., 2018). Hence, it is likely that 
regardless of their size, solitary species evolved a number of mor‐
phological adaptations that shoaling species lack, to compensate for 
predatory threats and the lack of “many eyes” to detect them. These 
compensatory traits may reduce susceptibility to predation and thus 
be associated with a reduction in FID when compared to similar sized 
individuals of more social species.

It might be assumed that fish found in the benthic zone would 
have more refuges (Angel & Ojeda, 2001; Tupper & Boutilier, 1995) 
and would thus be less influenced by their own size in their decision 
to flee (Killen, Atkinson, & Glazier, 2010). In addition, one might ex‐
pect that benthic species will generally have more morphological de‐
fences compared to pelagic ones (Hodge et al., 2018) and thus would 
be more prone to take risks independent of their size. However, we 
detected no significant effect of habitat type on the individual size‐
FID relationship. This may reflect a sampling bias: humans interact 
much more with benthic fishes compared to pelagic fishes, and thus, 
our estimates of pelagic fishes were characterized by few effect 
sizes with high confidence intervals (see Figure 3e).

We also did not find that longevity, trophic level or an area's 
protected status explained much variation in the body size‐FID re‐
lationship. Species with longer life expectancies were expected to 
be more cautious (longer FID) to guarantee that they reach matu‐
rity (Blumstein, 2006). Larger species ranking low in the food chain 
were expected to be preferred by predators because they provide 
more energy intake than smaller species from the same trophic level; 
moreover, species ranking higher in the food chain have fewer pred‐
ators, and thus, the selective pressure on them should be weaker 
along the evolutionary time (Capizzi, Luiselli, & Vignoli, 2007). While 
this could be expected for the two former variables, this was less 
expected for marine protected areas. Indeed, larger fish outside 
protected areas are preferentially targeted by spearfishers, while 
all fish are protected within conservation zones, regardless of their 
body size. Indeed, recent studies have shown that large fish become 
more wary when FID is measured during the fishing seasons in peri‐
odically harvested areas (Goetze et al., 2017) or outside permanent 
marine protected (Sbragaglia et al., 2018). Our meta‐analysis that 
used a substantially larger data set could not detect such a pattern. 

F I G U R E  4  Forest plot of the group 
size‐FID effect sizes. Effect sizes are 
shown in ascending order. Filled circles 
with horizontal lines represent effect 
size ± 95% confidence intervals
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Two explanations are possible. First, Goetze et al. (2017) used only 
remote video sensing that provided a minimum approach distance 
(MAD) data instead of FID. Importantly, MAD can be recorded even 
when flight does not occur, so that MAD is generally larger than FID. 
Second, Sbragaglia et al. (2018) focused only on highly exploited 
species, while we incorporated data on fish also exposed to non‐
consumptive tourism.

Fishing is known to impact population growth rate, behaviour 
(Biro & Post, 2008, Diaz Pauli and Sih, 2017) and social structure 
(Conrad, Weinersmith, Brodin, Saltz, & Sih, 2011). To improve catch‐
ability by reducing wariness, temporal closures have been actively 
implemented in different fishing zone (Cohen & Foale, 2013). This 
management strategy recognizes the importance of managing risk‐
taking in fishes. More generally, our results suggest that human har‐
vesting pressure does not alter the relationship between fish body 
size and FID—only the magnitude of FID. Our findings suggest that it 
is the species’ traits relative to their reproductive potential and life‐
history trajectory that shape the strength of individual body size‐
FID relationship. Hence, our analysis stresses the value of focusing 
on this behavioural trait to manage fish populations (Benevides et al., 
2018; Goetze et al., 2017).

We nevertheless identified some gaps in our literature review. 
Although we collected data on various continents (America, Asia, 
Oceania and Europe), we found no data from African fish popula‐
tions. Similarly, most studies were performed in tropical regions 
(Nunes et al., 2018). We encourage scientists from data‐pauperate 
zones to collect these needed data. While our study increased our 
knowledge on two of the most studied variables explaining varia‐
tion in fish FID, limited data on other potential moderating factors 
are understudied. For instance, much remains to be learned about 
the effects of predator size, levels of human disturbance and depth 
of the water column on FID. Yet, the influence of speargun pres‐
ence seems to have an effect on FID (Sbragaglia et al., 2018; Tran, 
Langel, Thomas, & Blumstein, 2016) but see (Januchowski‐Hartley 
et al., 2012), but further studies are needed to clarify if and at to 
what extent fish are able to recognize spearfishers. With such data 
in hand, we then would have an additional valuable tool to identify 
spearfishing pressure on populations or have a metric that tells us 
whether there is illegal harvesting.

Future studies focusing on the effect of human presence on fishes 
should consider the use of flight initiation distance along with a suite 
of functional traits. By doing so, we will develop a better understand‐
ing of how behaviour and morphology interact to modulate predation 
avoidance behaviour in an increasingly human‐dominated world.
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