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Animals are often confronted with potentially informative stimuli from a variety of sensory modalities. Although there is a large prox-
imate literature demonstrating multisensory integration, no general framework explains why animals integrate. We developed and 
tested a quantitative model that explains why multisensory integration is not always adaptive and explains why unimodal deci-
sion-making might be favored over multisensory integration. We present our model in terms of a prey that must determine the pres-
ence or absence of a predator. A greater chance of encountering a predator, a greater benefit of correctly responding to a predator, a 
lower benefit of correctly foraging, or a greater uncertainty of the second stimulus favors integration. Uncertainty of the first stimulus 
may either increase or decrease the favorability of integration. In three field studies, we demonstrate how our model can be empiri-
cally tested. We evaluated the model with field studies of yellow-bellied marmots (Marmota flaviventer) by presenting marmots with 
an olfactory-acoustic predator stimulus at a feed station. We found some support for the model's prediction that integration is favored 
when the second stimulus is less noisy. We hope additional predictions of the model will guide future empirical work that seeks to un-
derstand the extent to which multimodal integration might be situation dependent. We suggest that the model is generalizable beyond 
antipredator contexts and can be applied within or between individuals, populations, or species.

Key words: antipredator, decision-making, information, integration, multimodal, multisensory, risk assessment, unified percept, 
yellow-bellied marmots.

INTRODUCTION
Animals extract potential information from abiotic cues, conspecific 
signals, and through heterospecific eavesdropping. Information is 
essential to making optimal decisions. However, an animal is rarely 
completely certain of  the true state of  the world (Dall and Johnstone 
2002; Dall et al. 2005). Uncertainty is thought to, in part, drive the 
evolution of  multimodal sexual signals because these signals can in-
crease the likelihood that messages are received, correct for errors 
in signal detection, or increase information content (Guilford and 
Dawkins 1991; Hebets and Papaj 2005; Partan and Marler 2005). 
Despite acknowledging the importance in considering a receiver's 
environment to the evolution of  signals (e.g., Guilford and Dawkins 
1991; Partan and Marler 2005), less attention has been given to the 
fact that receivers are not passive agents in their environments and 
that their cognitive processing systems are also subject to selection 
(Dukas 2004; Miller and Bee 2012; Ronald et al. 2012; Mesterton-
Gibbons and Heap 2014). Few studies have explored the idea that 
the ability to integrate multisensory stimuli may depend on an 
individual's internal state or surrounding environmental conditions, 
and analysis of  the situations in which an animal should or should 
not integrate multisensory information is a growing area of  interest 
(Munoz and Blumstein 2012; Partan 2013; Halfwerk et  al. 2019; 

Ryan et al. 2019). Such studies are essential for developing a better 
understanding of  the evolutionary significance of  multimodal in-
tegration. In this study, we develop a quantitative framework that 
makes empirically testable predictions that allows us to ask why an-
imals may or may not integrate multisensory stimuli.

Given widespread uncertainty, in order to increase the accu-
racy of  an animal's estimate of  its world, one may initially assume 
that an individual will always attend to all available stimuli when 
making important decisions. Indeed, multisensory signaling and in-
tegration are methods for dealing with environmental uncertainty 
(Munoz and Blumstein 2012; Halfwerk and Slabbekoorn 2015; 
Partan 2017). We define multisensory integration as the combining 
of  information from multiple sensory modalities that influences de-
cision-making (Munoz and Blumstein 2012) (we develop a precise, 
quantitative definition below). Numerous empirical studies docu-
ment the occurrence of  multisensory integration in many taxa and 
contexts. Behaviorally, it is assessed by comparing responses to the 
isolated, unimodal stimuli with the combined, multimodal stimulus 
(Partan and Marler 1999). The types of  stimuli an animal can in-
tegrate include conspecific signals, heterospecific eavesdropping 
stimuli, and abiotic stimuli. Cross-modal integration has been 
documented in decisions regarding sexual selection (see Hebets 
and Papaj [2005], Partan and Marler [2005], and Halfwerk et al. 
[2019] for reviews), antipredator behavior (Brown and Magnavacca 
2003; Hazlett and McLay 2005; Lohrey et al. 2009; Partan et al. 
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2010; Ward and Mehner 2010), foraging (Sternthal 1974; Rowe 
and Guilford 1996, 1999; Siemers 2013), host suitability (Völkl 
2000), hunting (Roberts et  al. 2007; Cross and Jackson 2009a; 
Harley et al. 2011; Halfwerk et al. 2014; Gomes et al. 2017; Rojas 
et al. 2018; Rojas et al. 2019), detection and/or assessment of  so-
cial rivals (Narins et al. 2005; Thompson et al. 2008; de Luna et al. 
2010; Bretman et al. 2011; Taylor et al. 2011), navigation (Graham 
et al. 2010), distinguishing heterospecifics from conspecifics (Cross 
and Jackson 2009b), individual heterospecific individual (Smith 
and Evans 2008; Proops et  al. 2009; Kondo et al. 2012), mother-
offspring recognition (Wierucka et  al. 2018), and the onset of  
breeding activities (Voigt et al. 2011).

Despite the apparent usefulness of  having access to multiple 
stimuli, sometimes animals do not use all available stimuli in making 
a decision. Integration has been shown to depend on an individual's 
reproductive state (Kasurak et  al. 2012), a population's habitat 
(Partan et al. 2010), or a species' type of  mating system (Cross and 
Jackson 2009b). These studies discussed situation-dependent in-
tegration primarily on a proximate level. For instance, female go-
bies (Neogobius melanostomus) integrated vibrational-olfactory sexual 
stimuli from males only when reproductive (Kasurak et  al. 2012). 
Kasurak et al. (2012) discuss this result in terms of  a possible plas-
ticity of  structures responsible for integration across reproductive 
states. Squirrels (Sciurus carolinensis) in urban habitats exhibited 
greater response to the visual-only stimulus and greater multimodal 
enhancement to an audio-visual conspecific alarm stimulus com-
pared with squirrels in rural habitats (Partan et  al. 2010). Partan 
et al. (2010) discussed a cognitive shift from relying on acoustic to 
visual stimuli in noisy environments. Multimodal integration was 
studied across four species of  jumping spiders (Cross and Jackson 
2009b). In three of  the species, males compete for females (Portia 
fimbriata, Portia africana, and Jacksonoides queenslandicus). In the fourth 
species (Evarcha culicivora), in addition to male–male competition, fe-
male–female competition for mates exists. Only in E. culicivora did a 
conspecific male odor enhance visual-based conflict within females 
(Cross and Jackson 2009b). This last study, by noting that the value 
of  recognizing females is more important in E. culicivora compared 
with the other species, explained situation-dependent integration 
on a functional level.

These examples of  situation-dependent integration indicate that 
multimodal integration has functional significance in that, in some 
situations, the benefits of  ignoring a stimulus are greater than in-
tegrating multiple stimuli (Munoz and Blumstein 2012). Thus, the 
question of  “Why [should signalers] use multiple cues?” (Candolin 
2003; Hebets and Papaj 2005; Partan 2013) that is often asked in 
reference to the evolution of  multicomponent signals can also be 
asked from the perspective of  individuals perceiving stimuli: “Why 
should receivers integrate multiple stimuli?”

An interplay of  several factors may underlie the payoffs of  in-
tegrating and ignoring stimuli. We previously discussed, on a 
conceptual level, why multimodal integration is not ubiquitous 
(Munoz and Blumstein 2012). The precision with which a stim-
ulus indicates the state of  the world (either due to the state of  the 
world or the perceiver's cognitive ability to discriminate) relates to 
how often an animal will make mistakes. The frequency at which 
the animal makes each type of  mistake (e.g., Type I  vs. Type II 
error) is determined by the costs of  each mistake (formalized and 
developed below). Based on previous experience, ecological and/
or evolutionary, the animal will also have some expectation as to 
the likelihood of  a given event. The animal will also experience 
some physiological cost to attending to a stimulus. These factors 

can change depending on the animal's situation or environment. 
For example, a population of  birds near a stream will receive con-
specific vocalizations with greater uncertainty due to the noise 
of  flowing water. If  an animal is starving, mistakenly missing a 
foraging opportunity may greatly outweigh the cost of  a missed re-
productive opportunity; if  the animal is well fed, then the opposite 
might be true.

Here, we formalize a framework outlined by Munoz and 
Blumstein (2012) by developing a quantitative model to 1) explain 
why unimodal decision-making might be favored over multimodal 
decision-making, 2) identify key factors that favor multimodal inte-
gration, and 3) make clear predictions regarding the extent to which 
various factors influence integration with the aim of  providing test-
able hypotheses to guide future research. Finally, to illustrate that 
the model makes testable predictions that can be evaluated with 
animals, we ask whether three parameters (the benefit of  alert be-
havior when a predator is present, the benefit of  relaxed behavior 
when no predator is present, and the uncertainty of  the second of  
two predator stimuli) influence multimodal integration in free-living 
yellow-bellied marmots (Marmota flaviventer).

PART I: THEORETICAL MODEL
Methods

Modeling framework
When the world is uncertain, sometimes it might not pay for an in-
dividual to attend to a stimulus (Bradbury and Vehrencamp 1998, 
2000). Here, we formally expand on this idea by modeling a situ-
ation where an animal receives two sequential stimuli in different 
sensory modalities (see Table 1 for definitions and Table 2 for a 
complete summary of  assumptions). In our model, different sen-
sory modalities are represented in our model through the uncer-
tainty parameter U1 and U2. This is because different modalities are 
generally independent from one another. For example, wind may 
diffuse chemical odorants but leave a visual stimulus unchanged. 
Furthermore, an individual likely perceives stimuli in different mo-
dalities with different accuracies. To a terrestrial animal, vision may 
be the most accurate of  modalities and, therefore, have a relatively 
low uncertainty compared with other modalities. We also recognize 
that different stimuli in a single sensory modality can indicate events 
with different accuracies. For example, the sound of  rustling vegeta-
tion could correspond to a predator, but something innocuous such 
as wind is also likely to produce a similar sound. Therefore, rustling 
vegetation may have high uncertainty compared with, for example, 
a vocalization even though both are acoustic stimuli.

The model examines the extent to which stimulus uncertain-
ties, prior probability of  a given state, and the costs of  mistakes 
influence whether or not a prey will integrate two stimuli in dif-
ferent sensory modalities. We also include a physiological cost to 
integration. For the purposes of  developing our model, we use an 
example of  a foraging prey (notation descriptions in Table 3). We 
refer readers to Supplementary Material for an application of  the 
model to mate recognition.

The world is in one of  two possible states, predator present 
(PRED) or no predator present (NONE). The prey has an estimate 
for the prior probability of  the presence of  a predator, PPRED, which 
could have been gathered over evolutionary time or within the life-
time of  the prey. The prey can engage in one of  two behaviors, ei-
ther forage (F) or hide (H). Because the prey is not certain as to the 
presence of  a predator, the prey will sometimes make mistakes. The 

185

D
ow

nloaded from
 https://academ

ic.oup.com
/beheco/article-abstract/31/1/184/5601418 by U

C
LA Biom

edical Library Serials, D
aniel Blum

stein on 18 February 2020



Behavioral Ecology

prey always manages to escape the predator, but the predator will 
injure the prey if  the prey fails to hide. Depending on the state of  
the world and whether the prey is foraging or hiding, the prey can 
receive one of  four payoffs, Wbehavior,STATE. WF,NONE and WH,PRED are 
the payoffs of  behaving appropriately either when a predator is ab-
sent or present, respectively. WH,NONE and WF,PRED are the payoffs 
of  mistakes either when a predator is absent or present, respec-
tively. Foraging receives the greatest benefit when a predator is not 
present, and hiding receives the greatest benefit when a predator is 
present. We assumed these payoffs do not change in between the 
first and second stimuli.

In the absence of  a stimulus or when the prey “ignores” a stim-
ulus, the prey sets a cutoff probability Pc, which is optimal when the 
following condition holds (Bradbury and Vehrencamp 1998):

Pc
1− Pc

=
WF ,NONE −WH ,NONE

WH ,PRED −WF ,PRED
.

The payoff the prey receives when ignoring a stimulus depends on 
the value of  Pc relative to PPRED. When PPRED ≤ Pc, the prey always 
forages with low vigilance and receives the average payoff:

POignore = (1− PPRED)WF ,NONE + PPREDWF ,PRED

When PPRED > Pc the prey will always hide and receives the average 
payoff:

POignore = PPREDWH ,PRED + (1− PPRED)WH ,NONE.

Throughout, we use “stimulus” to refer to a feature within a sen-
sory modality which can assume a set of  magnitudes Si (Figure 1). 
We have used the subscript i to index the order of  stimuli. For the 
purposes of  introducing our model, we use “body size” as an ex-
ample of  a stimulus. If  the prey “uses” the stimulus, then it incorp-
orates information about body size into its decision to forage or 
hide. When using a stimulus, the prey receives an average payoff 
POi,use. The animal should use stimulus i only when POi,use ≥ 
POi,ignore. The difference between these two average payoffs is also 
known as the value of  information Vi (Stephens 1989; Bradbury 
and Vehrencamp 1998), which must be positive for the prey to use 
the stimulus.

The prey correctly decides to forage with some probability 
Pi,correct reject. The animal also makes a correct decision if  it hides, 
which occurs with probability Pi,hit. The probabilities of  mistakes 
are the probability of  foraging when a predator is present, Pi,miss, 
and the probability of  hiding when in fact a nonthreat is present, 
Pi,false alarm.

The average payoff of  using a stimulus equals the average payoff 
of  doing each behavior in each state weighted by the probability 
that the world is in that state minus the processing costs in the 
form of  energy expenditure and/or physiological investment in 
sensory systems (Niven and Laughlin 2008), Ki, of  attending to the 
stimulus. Thus,

POi,use =(1− PPRED)
(
Pi,correct rejectWF , NONE + Pi,false alarmWH ,NONE

)

+ PPRED (Pi,hitWH ,PRED + Pi,missWF ,PRED)− Ki .

Because Pi,correct reject = 1 − Pi,false alarm and Pi,miss = 1 − Pi,hit, the pre-
ceding can be rewritten as

Table 1
Definitions

Term Definition

Stimulus A feature within a sensory modality such as body size, auditory frequency or odor concentration. A stimulus 
encompasses the spectrum of  magnitudes Si that said feature can assume. 

Uncertainty, Ui Difference in means of  the distributions of  Si (Figure 1). When the difference in means is smaller, the stimulus is more 
uncertain and the state of  the word (e.g., predator vs. nonthreat) is less distinguishable. We model different sensory 
modalities by specifying different Ui for every stimulus.

Receiver environment Properties of  the receiver and/or the receiver's environment that influence how a receiver might respond to Si. 
Modeled through PPRED, Ui, Ki, BPRED, BNONE.

Using/attending to a stimulus If  an animal “uses” a stimulus, then it incorporates any Si into its behavioral decision in order to improve the accuracy 
of  its perception of  the world. Optimal when Vi ≥ 0.

Ignoring a stimulus The animal does not incorporate any Si into its behavioral decision. Its estimate of  the state of  is not improved. 
Optimal when Vi ≤ 0.

Information The change in the animal's expectation of  the state of  the world [after Bradbury and Vehrencamp (1998), p. 389]. If  it 
is optimal for an animal to ignore a stimulus, then the stimulus does not have information.

Multimodal integration When the animal incorporates information from n stimuli from more than one sensory modality in order to improve 
the accuracy of  its expectation of  the world. Optimal when V1…Vn ≥ 0 for n ≥ 2.

Noise A property of  the world that generates stimulus uncertainty.

Table 2
Summary of  assumptions for analyzing 
optimal-integration model

Prey receives stimuli sequentially.
World is in one of  two states: predator present (PRED) or nonthreat 
present (NONE).
Prey knows the true likelihood of  a predator being present.
Prey can either forage (F) or hide (H).
H is optimal for PRED, and F is optimal for NONE.
If  the prey forages when PRED is true, the prey escapes but is injured.
Distributions of  stimulus magnitudes of  PRED and NONE are 
continuous  
and normal with an SD of  1 (Figure 1).
WF,PRED < WF,NONE, WH,PRED < WF,NONE.
Prey has knowledge of  Ui, BNONE, BPRED, and Ki.
Prey makes antipredator decisions following signal detection theory.
All Wbehavior,STATE are constant.
Animal updates its prior according to Bayes' Theorem.
K1 = 0.
0 ≤ K2 ≤ 5.
−1 ≤ S1 ≤ 1.
0 ≤ U1, U2 ≤ 1.
0 ≤ BPRED, BNONE ≤ 5.
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POi,use = PPREDPi,hit (WH ,PRED −WF ,PRED)

− (1− PPRED) Pi,false alarm (WF ,NONE −WH ,PRED)

+ PPREDWF ,PRED + (1− PPRED)WF ,NONE − Ki .

The value of  information, POi,use − POi,ignore, for using a stimulus 
when PPRED ≥ Pi,c is then

Vi = PPREDPi,hitBPRED − (1− PPRED) Pi,false alarmBNONE

+ PPREDBPRED

Å
1− (1− PPRED)BNONE

PPREDBPRED

ã
− Ki

and when PPRED < Pi,c is

Vi = PPREDPi,hitBPRED − (1− PPRED) Pi,false alarmBNONE − Ki

BPRED  =  WH,PRED−WF,PRED is the net benefit of  hiding when a 
predator is present. BNONE =  (WF,NONE−WH,NONE) is the benefit of  
foraging when a nonthreat is present.

An object with a body size Si corresponds to a predator with a 
certain probability P(Si|PRED) and to a nonpredator with a cer-
tain probability P(Si|NONE). We assumed these probability distri-
butions are continuous and normal with a standard deviation (SD) 
equal to 1 unit on an arbitrary scale (Table 2). We assumed that the 
prey has knowledge of  these distributions

P (Si | PRED) =
1√
2π

exp
î
−0.5(Si − µi,PRED)

2
ó

P (Si | NONE) =
1√
2π

exp
î
−0.5(S1 − µi,NONE)

2
ó

Body size indicates if  the object is more likely a predator or 
nonpredator because the average body size of  predators, μ PRED, and 
nonthreats, μ NONE, are different (Figure 1). Here, we have assumed 
that, on average, predators are larger than nonpredators: μ i,PRED 
> μ i,NONE (Figure 1). However, sometimes predators are smaller 
than nonpredators and vice versa. On our arbitrary scale for Si, the 
grand mean of  body sizes equals 0 (as will be shown below; only 
the difference in means between predators and nonthreats is im-
portant). The extent to which the world is uncertain depends on 
μ i,PRED and μ i,NONE. As µ i,PRED and µ i,NONE become more similar, 
the overlap between the NONE and PRED distributions increases, 
thereby increasing the probability of  making mistakes.

We assumed that when the prey uses a stimulus, it makes foraging 
decisions following signal detection theory in which the prey re-
ceives the maximum average payoff when it sets a cutoff at some 
stimulus magnitude Si,c (Green and Swets 1966; Oaten et al. 1975; 
Brilot et al. 2012). If  the prey receives a stimulus with magnitude Si 
≥ Si,c, the prey will always hide. If  the prey receives a stimulus with 
magnitude Si < Si,c, the prey will forage. Consequently, we calcu-
lated Si,c from the relationship that, at the optimal Si,c, the average 
payoff of  foraging  PO(F )i  equals the average payoff of  high vigi-
lance  PO(H)i. The average payoff of  a given behavior is the payoff 
of  the behavior in each state weighted by the probability that the 
world is in a given state. Therefore,

PO(F )i = P (PRED | Si,c)WF ,PRED + P(NONE|Si,c)WF ,NONE, and

Table 3
Notation definitions

Notation Definition

PRED State of  the world when a predator is  
present

NONE State of  the world when a nonthreat is  
present

F Foraging. Optimal when a nonthreat is  
present

H Hiding. Optimal when a predator is  
present

PPRED Prey's estimate of  the prior probability  
that a predator is present

BPRED Net benefit of  correctly hiding when a  
predator is present

BNONE Net benefit of  correctly foraging when a  
nonthreat is present

POignore Average payoff of  not using a stimulus  
when making an antipredator decision

POi,use Average payoff of  using the ith stimulus  
when making an antipredator decision

Ki Cost of  using the ith stimulus
µ i,PRED Mean Si when a predator is present
µ i,NONE Mean Si when no predator is present
Ui A unitless index of  uncertainty of  the ith  

stimulus equal to the proportion of   
overlap between the NONE and PRED  
distributions of  Si and is a function of  µ i,PRED and µ i,NONE

Si Magnitude of  the ith stimulus
Vi The value of  information is the output  

variable of  model. Equals the difference  
POi,use- POi,ignore. When Vi ≥ 0,  
the animal will use the ith stimulus in  
improving the accuracy of  its estimate of   
the state of  the world

A Favorability of  integration. Equals the  
proportion of  a parameter area while  
holding all other parameters constant,  
in which integration is favored (Supplementary Figure S1)
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Figure 1
Distributions of  stimulus magnitudes Si when no predator is present 
(NONE) or when a predator is present (PRED). Uncertainty is defined by 
the extent to which distributions overlap. We have assumed that μ NONE < 
μ PRED. (a) 10% overlap of  distributions (i.e., Ui = 0.1). (b) 90% overlap of  
distributions (i.e., Ui  =  0.9). Image credits to clipartbest.com (hare) and 
shutterstock.com (lion).
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PO(H)i = P (PRED | Si,c)WH ,PRED + P(NONE|Si,c)WH ,NONE.

Alternately, at Si,c, the following is true:

BPREDP (PRED|Si,c) = BNONEP (NONE|Si,c)

where P(PRED|Si,c) and P(NONE|Si,c) are the probabilities of  the 
presence of  a predator and a nonpredator given a stimulus of  mag-
nitude Si,c, respectively. From Bayes' Theorem,

P (PRED | Si,c) =
PPREDP(Si,c|PRED)

P(Si,c)

and similarly for P(NONE|Si,c). P(Si,c) is the sum of  the probability 
of  Si,c in each state, weighted by the probability that the world is in 
that state.

P (Si,c) = PPREDP (Si,c|PRED) + (1 PPRED) P (Si,c|NONE)

Therefore, on specifying BPRED, BNONE, μ PRED, and μ NONE, the 
value of  Si,c is known (see Supplementary Material for the explicit 
equation for Si,c).

Pi,hit and Pi, false alarm, which are the areas under the PRED distri-
bution above Si,c and under the NONE distribution above Si,c, re-
spectively, are given by

Pi,hit = 1− 0.5
ï
1+ erf

Å
Si,c − µi,PRED√

2

ãò

and

Pi,false alarm = 1− 0.5
ï
1+ erf

Å
Si,c − µi,NONE√

2

ãò

where erf(x) is the error function of  x.
Using the preceding equations and on specifying PPRED, BNONE, 

BPRED, µ 1,PRED, µ 1,NONE, and K1, the value of  information of  the first 
stimulus can be calculated (see Supplementary Material for the ex-
plicit equation for Vi when PPRED ≥ Pc or when PPRED < Pc).

If  the prey uses the first stimulus (i.e., V1 ≥ 0), we can calculate 
PPRED´ from S1, μ 1,STATE, and PPRED using Bayes' Theorem:

PPRED′ =
PPREDP(S1|PRED)

P(S1)

where P(S1|PRED) is the probability of  receiving a stimulus with 
magnitude S1 when a predator is present. Because we have assumed 
that the probability of  receiving S1 in each state is a normal distri-
bution with unit SD,

P (S1 | PRED) =
1√
2π

exp
î
−0.5(S1 − µ1,PRED)

2
ó

P(S1) is the probability of  a stimulus with magnitude S1 occurring 
the world, which is the sum of  the probabilities of  S1 in each state 
weighted by the probability that the world is in that state:

P (S1) = PPREDP (S1|PRED) + (1 PPRED) P (S1|NONE) .

The animal then receives a second stimulus having properties 
μ 2,NONE and μ 2,PRED. Because processing costs are likely to be 
greater with increasing number of  stimuli, we assumed that K1 ≤ 
K2. Setting PPRED = PPRED´, V2 is then calculated.

When V1 ≥ 0 and V2 ≥ 0, it is optimal for the prey to use in-
formation from both modalities in making a foraging decision, a 
situation we call integration. Thus, the criterion V1 ≥ 0 and V2 ≥ 0 
is a formal definition of  multimodal integration. The situation can 

be specific to multiple modalities by specifying different levels of  
uncertainty for each stimulus. As is typically the case, different sen-
sory modalities are independently disturbed by environmental noise 
(acoustic noise will not affect a visual stimulus) and/or by the fact 
that an individual is generally better at discriminating the world 
based on stimuli in certain modalities. Two instances of  unimodal 
information use can occur. The first instance is when V1 ≥ 0 and V2 
< 0, which is when the prey only uses the first stimulus. The second 
instance of  unimodal information use occurs when V1 < 0 and V2 
≥ 0.  In the latter example, the prey evaluates the second stimulus 
without updating PPRED. When V1 < 0 and V2 < 0, the prey does 
not obtain information from either stimulus to inform its percep-
tion regarding the presence/absence of  a predator.

When discussing uncertainty, we are referring to a unitless pa-
rameter Ui, which is the proportion of  overlap between the NONE 
and PRED distributions of  the ith stimulus. By doing so, uncer-
tainty, which is the difference in means of  PRED and NONE distri-
butions, is on a unitless scale.

Sensitivity analysis
We assessed the sensitivity of  V2 to PPRED, BNONE, BPRED, U1, U2, K2, 
and S1 by calculating Spearman partial rank correlation coefficients 
(PRCC) between input parameters and V2. We ran 500 simulations 
with parameters sampled using Latin Hypercube Sampling (LHS). 
LHS is commonly used to explore the behavior of  models by, effec-
tively, simultaneously varying all the values of  all input parameters 
(McKay et al. 1979; see Blower and Dowlatabadi 1994 for an ex-
ample). Because we were interested in an exploratory LHS analysis, 
we assigned uniform Supplementary Material (Helton 1993) to all 
parameters. We varied U1 and U2 from 0 to 1; S1 from −1 to 1; 
PPRED from 0 to 1; BNONE and BPRED from 0 to 5; and K2 from 0 to 5 
(because V2 is only calculated when V1 ≥ 0, we assumed K1 = 0 as a 
simplification. By doing so, V1 ≥ 0 for all parameter combinations).

Graphical methods
We examined different situations where information use switches 
from unimodal to bimodal. In presenting our results graphically we 
frame our results in terms of  the “favorability of  integration” A, 
which we define as the proportion of  a 2D parameter area in which 
V2 is positive while the other parameters are held constant (see 
Supplementary Figure S1). Each area consisted of  40 × 40 simula-
tions and each plot consists of  20 values of  A. All simulations and 
analyses were done using R, version 3.0.2 (R Core Team 2016).

Model results

We developed a general model that determines whether or not an 
animal should integrate two stimuli in different sensory modalities 
given a set of  environmental conditions when deciding to engage 
in one of  two behaviors. Two different modalities were modeled 
by specifying different U1 and U2. When integrating additional 
stimuli, an animal increases the accuracy of  its perception of  the 
world, thereby increasing the likelihood that the animal makes a 
correct decision. However, our model demonstrates that, in some 
situations, due to the costs of  mistakes and the costs of  attending 
to stimuli, the benefit from making more accurate decisions is not 
sufficient to warrant integration.

Spearman PRCC between model parameters and V2 sampled 
using LHS are given in Table 4. Because K2 is a cost of  attending 
to the second stimulus, a greater K2 decreases V2 (PRCC = −0.80, 
P = 9.87 × 10–141, Est. = −25.26).
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A larger PPRED increases the favorability of  integration 
(PRCC = 0.74, P = 4.87 × 10–94, Est. = 20.57; Figure 2). Larger 
U2 decreases the favorability of  integration (PRCC  =  −0.25, 
P = 1.41 × 10–6, Est. = −4.82). The magnitude of  the first stimulus 
S1 influences integration through its action in the prey's updated 
prior after receiving the first stimulus PPRED'. An S1 that is more 
like a predator (i.e., S1 > 0)  generates PPRED' > PPRED, indicating 
an increased likelihood of  encountering a predator. An S1 that is 
more like a nonthreat (i.e., S1 < 0) indicates a decreased likelihood 
of  encountering a predator (PPRED' < PPRED). Therefore, greater 
S1 increases the importance of  distinguishing predators from 
nonpredators (PRCC = 0.65, P = 5.18 × 1060, Est. = 16.34). This 
effect is also seen by, for a given U1 and PPRED, a smaller A when S1 
is more likely to have originated from a nonthreat (Figure 2a) than 
predator (Figure 2b).

The relationship between U1 and favorability of  integration 
is nuanced. Sensitivity analysis shows a negligible correlation be-
tween U1 and V2 (PRCC = 0.004, P = 0.93, Est. = 0.09). This result 
emerges because the directional effect of  U1 on V2 depends on S1; 
thus, on average, the effect of  U1 is negligible. For S1, highly indica-
tive of  a nonthreat (i.e., S1 < 0), greater U1 increases the favorability 
of  integration (Figure 2a). For S1, highly indicative of  a predator 
(i.e., S1 > 0), smaller U1 increases the favorability of  integration 
(Figure 2b). When S1 is equally likely to have originated from a 
predator and nonthreat (i.e., S1 = 0), U1 has no effect on integra-
tion and the effect of  U2 is most strongly observed for smaller PPRED 
(Figure 2c top vs. bottom).

BPRED is the benefit for correctly hiding (i.e., hiding when a pred-
ator is present). As BPRED increases, the prey's perception should tend 
toward integration (PRCC = 0.70, P = 1.31 × 10–77, Est. = 18.65). 
A  larger BNONE means that the prey receives a greater benefit for 
correctly foraging (i.e., foraging when a nonthreat is present). As the 
need for accuracy in detecting a predator decreases, as might arise 
when the prey's energy reserves run low and a missed foraging op-
portunity could compromise the prey's health, the prey does better 
to ignore the second stimulus and always forages even if  it means 
increasing the rate at which the prey misses detecting a predator. 
Consequently, higher BNONE tends to decrease the favorability of  in-
tegration (PRCC = −0.25, P = 9.79 × 10–7, Est. = 20.57). However, 
BPRED has more than three times the effect on integration compared 
with BNONE (Est = 18.65 compared with −4.90).

PART II: EMPIRICAL TESTS
Methods

Through three separate field studies, we illustrate how three pre-
dictions of  our model can be empirically tested. We examined the 

effects of  BPRED, U2, and BNONE on integration in free-living yel-
low-bellied marmots. We measured marmot responses to coyote 
olfactory and/or acoustic stimuli while foraging at a feed station 
(we refer readers to Supplementary Material for details of  the feed 
station and playback setup). Individuals received four treatments, 
water-X1, urine-X1, water-X2, or urine-X2, where X1 and X2 are dif-
ferent levels of  the model parameter we were testing in the given 
experiment (i.e., BPRED, U2, or BNONE). We assigned treatments ac-
cording to a predefined Latin square.

The study testing the model prediction that higher BPRED fa-
vors integration was conducted in 2011. Within the framework of  
our model, BPRED is the benefit to marmots of  correctly increasing 
alert behavior when a predator is present. We manipulated BPRED 
based on the distance of  the feed station to the burrow. Assuming a 
greater severity of  injury when failing to appropriately respond to 
a predator when farther from the burrow, the higher-BPRED condi-
tion is associated with marmots foraging further from the burrow. 
In the lower-BPRED situation, the feed station was set up 1 m from 
the burrow. In the higher-BPRED situation, the feed station was set 
up 3.5 m away from the burrow.

The study testing the model prediction that higher U2 decreases 
the favorability of  integration was conducted in 2012. U2 is the un-
certainty of  the second stimulus, which in our setup is vocalizations. 
We established two levels of  U2 based on the level of  white noise 
embedded (using Sound Studio V. 4) in the audio files of  coyote vo-
calizations, high (−5 dB) or low (−20 dB) noise (see Supplementary 
Material for spectrograms and waveforms). The overall amplitude 
of  the playback was not adjusted after embedding in noise. The 
feed station was set up 3.5 m from burrow.

The study testing the model prediction that greater BNONE de-
creases the favorability of  integration was conducted in 2013. 
Within the framework of  our model, BNONE is the benefit to 
marmots of  foraging in the absence of  a predator. We ma-
nipulated BNONE through handling time of  the bait by mixing 
the bait with pebbles approximately 7  mm in diameter (“Pea 
Pebbles,” Pavestone, Tyrone, GA). The ratio of  bait to pebbles 
was either 6:1 or 4:3. A  lower ratio of  bait to pebbles (4:3) es-
tablishes a longer handling time such that, in a given amount 
of  time, marmots obtained a lower foraging return compared 
to a higher ratio of  bait to pebbles (6:1). Therefore, the low- 
and high-BNONE conditions are associated with the 4:3 mixture 
and 6:1 mixtures, respectively. The feed station was set up 3.5 
m from burrow.

All analyses were done using R (V. 3.3.2) (R Core Team 2016). 
We fitted linear mixed-effects models by maximizing the log-
likelihood using the function lme in the R package nlme (Pinheiro 
et  al. 2013). We specified “individual” as the random factor and 
the arcsine square root transformation of  proportion of  time 
spent foraging as the dependent variable. Fixed factors were 
odor:acoustic stimulus [water:none, water:vocalizations, urine:none, 
and urine:vocalizations], age (yearling, adult), sex, audio exemplar 
(1–3), trial number (1–4), model parameter (X1, X2), and the inter-
action between stimulus and model parameter. We tested the signif-
icance of  fixed effects through Wald tests using the function anova.
lme in the package nlme (Pinheiro et al. 2013). If  a significant stim-
ulus × parameter interaction was found, we ran separate models 
for each parameter level and conducted post hoc pairwise com-
parisons with Tukey contrasts using the function ghlt in the package 
multcomp (Hothorn et al. 2008).

Marmots were studied under protocols approved by the Animal 
Use and Care Committees of  the University of  California Los 

Table 4
Results of  PRCC sensitivity analysis of  V2

 PRCC P value Est.

PPRED 0.74 4.87 × 10−94 20.57
U1 0.004 0.93 0.09
U2 −0.25 1.41 × 10−6 −4.82
BNONE −0.25 9.79 × 10−7 −4.90
BPRED 0.70 1.31 × 1077 18.65
K2 −0.80 9.87 × 10−141 −25.26
S1 0.65 5.18 × 10−60 16.34

Parameters were sampled 500 times using LHS.
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Angeles and the RMBL (UCLA Protocol No. 2001-191-01, RMBL 
protocol No. 1, both renewed annually) and under permits from 
the Colorado Division of  Wildlife (TR917 issued annually). By de-
sign, animals were not harmed by routine live trapping or by these 
brief  experiments.

Results

We found that marmots' (N = 21) pattern of  responses to pred-
ator stimuli was influenced by noise level of  vocalizations U2, 
shown by a significant noise × stimulus interaction (F  =  3.887, 
P = 0.011; Table 5). Post hoc comparisons (Figure 3) of  responses 
to stimuli show a different pattern of  responses to low-noise 
(Table  6) and high-noise (Table 7) situations. In the low-noise 
condition, the multimodal response was different from urine 
(Est.  =  −0.355, SE  =  0.69, Z  =  −5.142, P  <  0.001) and vocals 
(Est.  =  −0.207, SE  =  0.066, Z  =  −3.130, P  =  0.009). In the 
high-noise condition, the multimodal response was different from 
urine (Est.  =  −0.399, SE  =  0.049, Z  =  −8.142, P  <  0.001) but 
not different from vocals.

We did not find a significant parameter × stimulus interac-
tion in the studies testing BPRED (N = 24) or BNONE (N = 21) on 
marmots' pattern of  responses to predator stimuli. We refer 
readers to Supplementary Material for tables summarizing 
these results.

DISCUSSION
Understanding the factors responsible for the diverse types of  mul-
timodal integration responses and the evolution or loss of  integra-
tion abilities is challenging. Through a mathematical model, we 
suggested that multimodal integration may be situation dependent 
as has been reported in previous studies (e.g., population-specific 
differences in multimodal integration in squirrels: Partan et  al. 
[2010]; reproductive state influenced multimodal integration in 
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Figure 2
The effects of  PPRED, U2, S1, and U1 on the favorability of  integration (A) over parameter area BPRED × BNONE. In all graphs, BNONE and BPRED were varied 
between 0 and 5; K1 = 0 and K2 = 1; each line represents a different PPRED; the legend in the first graph applies to all graphs. A  larger PPRED increases 
A. U2 = 0.2 (top) and 0.8 (bottom). Larger U2 decreases A.  In (a)–(c), S1 = −1, 1, 0, respectively. These S1 correspond to magnitudes of  the first stimulus 
more likely from a nonthreat, more likely from a predator, or equally likely from a nonthreat and predator, respectively. When S1 is more like a nonthreat, 
increasing U1 increases A.  When S1 is more like a predator, increasing U1 decreases A.  When S1 is equally likely to have come from a nonthreat and a 
predator, U1 does not affect A.

Table 5
Results from linear mixed-effects model of  the proportion of  
time allocated to foraging in the study testing the influence of  
U2 (vocalization noise) on integration

Fixed factor df F P

Age 1, 18 0.558 0.465
Sex 1, 18 0.003 0.958
Audio exemplar 2, 137 0.181 0.835
Treatment number 1, 137 9.479 0.003
Stimulus 3, 137 35.050 <0.001
Noise 1, 137 3.027 0.084
Stimulus × noise 3, 137 3.887 0.011

Significant P-values are highlighted in bold. N = 21. Individual ID was the 
random effect.
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gobies: Kasurak et al. [2012]). We demonstrated in three field ex-
periments how an animal's environment may be parameterized in 
our model and by doing so hope to stimulate future empirical tests.

Our model defines “multimodal integration” as occurring when 
the values of  information for sequential stimuli are >0. We mod-
eled different sensory modalities by defining differing uncertainties 
for each stimulus. The following parameters were found to increase 
the favorability of  integration: greater prior probability of  a pred-
ator present, greater probability that the first stimulus came from 
a predator, lower uncertainty of  the second stimulus, lower benefit 
of  foraging in the absence of  a predator (BNONE), greater benefit 
of  increased antipredator behavior in the presence of  a predator 
(BPRED), and lower cost of  attending to a stimulus. The directional 

effect of  uncertainty of  the first stimulus on the favorability of  in-
tegration depends on whether S1 is more indicative of  a nonthreat 
or a predator. For S1 more like a nonthreat, the favorability of  in-
tegration increases with increasing U1. For S1 more like a predator, 
the favorability of  integration decreases with increasing U1. For S1 
equally likely to have been produced by a predator or nonthreat, U1 
has no effect on integration.

In the field, we tested the effect of  uncertainty of  the second 
stimulus (U2) on olfactory-acoustic integration by playing back 
coyote vocalizations embedded in one of  two different noise levels. 
We found that noise influences multimodal integration in marmots. 
Under low noise, marmots' multimodal response was different 
from the unimodal responses, consistent with the formation of  a 

Table 6
Pairwise comparisons of  stimulus types for low-noise vocalizations

Stimulus comparison Est. SE Z P

Urine + vocals Urine −0.355 0.069 −5.142 <0.001
Water Urine −0.105 0.066 −1.591 0.383
Water + vocals Urine −0.561 0.066 −8.500 <0.001
Water Urine + vocals 0.250 0.066 3.779 <0.001
Water + vocals Urine + vocals −0.207 0.066 −3.130 0.009
Water + vocals Water −0.456 0.060 −7.639 <0.001

Proportion of  time spent foraging is the dependent variable (N = 21). Significant P-values are in bold.
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Figure 3
Mean proportion of  time marmots spent foraging when coyote vocalizations were (a) less noisy or (b) more noisy. Brackets indicate significantly different 
pairwise comparisons. Error bars show 95% confidence intervals. N = 21.

Table 7
Pairwise comparisons of  stimulus types for low-noise vocalizations

Stimulus comparison Est. SE Z P

Urine + vocals Urine −0.399 0.049 −8.142 <0.001
Water Urine 0.117 0.056 2.089 0.156
Water + vocals Urine −0.343 0.056 −6.106 <0.001
Water Urine + vocals 0.516 0.056 9.202 <0.001
Water + vocals Urine + vocals 0.057 0.056 1.007 0.744
Water + vocals Water −0.460 0.057 −8.124 <0.001

Proportion of  time spent foraging is the dependent variable (N = 21). Significant P-values are in bold.
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multimodal percept (sensu Partan and Marler 1999; Stein et  al. 
2009; Halfwerk et al. 2019). The multimodal foraging response was 
less compared with urine alone but greater compared with vocals 
alone. For an interpretation of  foraging levels on marmots' percep-
tion of  risk, we refer readers to Supplementary Materials. Under 
high-noise marmots, we did not find evidence of  multimodal inte-
gration. The result dovetails with predictions from our model that 
integration is favored under lower U2. Furthermore, this result is an 
example of  how noise can cause a shift in multimodal perception 
at the level of  the individual and demonstrates how changes in per-
ception could ultimately impact changes in signaling (Partan 2017).

In the field, we manipulated BPRED and BNONE through distance 
at which marmots foraged from the burrow and bait handling 
time, respectively. We did not find an effect of  BPRED or BNONE on 
olfactory-acoustic integration in marmots. This result could be be-
cause the influence of  a given parameter depends on the values of  
other parameters. It is possible that the region in parameter space 
in which we tested marmots was such that the favorability of  inte-
gration does not strongly respond to BPRED or BNONE. It is possible 
that, if  we had chosen more disparate levels of  these parameters, 
we could have detected a change in integration response.

Although we have developed and tested our model within the 
context of  a prey making antipredator decisions, our model 
can predict integration in a variety of  ecological contexts (see 
Supplementary Materials for an example of  mate recognition). 
Furthermore, our model can be modified to capture more com-
plex situations. In nature, objects often have several attributes (e.g., 
size, color, and vocalization frequency); each of  these attributes 
can be incorporated by defining Si as a vector on several axes. 
Furthermore, more than two stimuli can be examined simply by 
iteratively applying the algorithm with the new updated probability 
and stimulus' uncertainty. So far, we have assumed stimuli are re-
ceived on a time scale such that the benefits of  correct decisions are 
constant. However, these benefits may change in rapidly changing 
environments or when the time lag between receiving a stimulus 
is relatively large. Our model can also be extended to represent a 
world that can be in three or more states. For example, a prey's 
response may depend on whether an aerial predator is present, a 
terrestrial predator is present, or a nonthreat is present (e.g., Brilot 
et al. 2012). Furthermore, behavior decisions may not be bimodal 
as we have assumed. A prey's decision may be with regards to the 
level of  vigilance it should display, which can vary on a continuous 
scale depending on the level of  threat posed (Lima and Dill 1990). 
This can be incorporated by specifying a “response function”, for 
example, that varies from 0 (no vigilance) to 1 (constant vigilance) 
with some function through Si,c. These readily modeled situations 
should be further explored.

Given a changing set of  environmental conditions, an individual's 
decision to switch from unimodal to multimodal integration (or 
vice versa) will follow our model's predictions only if  the individual 
has knowledge of  the extent to which the environment changed. 
Sih et al. (2011) provide a thorough review of  how animals might 
have this knowledge in order to adaptively respond to changing en-
vironments. Given the premise that multimodal integration is an 
adaptive response to an individual's environment (Partan 2017), 
knowledge of  a changing environment assumed by our model may 
be obtained by animals through mechanisms identified by Sih et al. 
(2011).

In conclusion, we have developed and tested a model that pre-
dicts the extent to which animals should integrate multisensory 
stimuli given a set of  environmental conditions. Uncertainty and 

the value of  information (Stephens 1989; Koops 2004) have previ-
ously been applied to several problems involving a single stimulus. 
Our model is relevant to multimodal situations because of  differing 
degrees of  uncertainty specified for each stimulus. We hope the 
model will inspire future empirical tests of  the model, which are 
necessary to further understand the extent to which integration is 
an adaptation and the environmental situations that may preclude 
integration at the level of  the individual, population, or species.

SUPPLEMENTARY MATERIAL
Supplementary data will be available online after publication.
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