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Abstract

Species that hibernate live longer than would be expected based solely on their body size. Hibernation 

is characterized by long periods of metabolic suppression (torpor) interspersed by short periods of 

increased metabolism (arousal). The torpor-arousal cycles occur multiple times during hibernation, and 

it has been suggested that processes controlling the transition between torpor and arousal states cause 

aging suppression. Metabolic rate is also a known correlate of longevity, we thus proposed the 

‘hibernation-aging hypothesis’ whereby aging is suspended during hibernation. We tested this 

hypothesis in a well-studied population of yellow-bellied marmots (Marmota flaviventer), which spend 

7-8 months per year hibernating. We used two approaches to estimate epigenetic age: the epigenetic 

clock and the epigenetic pacemaker. Variation in epigenetic age of 149 samples collected throughout 

the life of 73 females were modeled using generalized additive mixed models (GAMM), where season 

(cyclic cubic spline) and chronological age (cubic spline) were fixed effects. As expected, the GAMM 

using epigenetic ages calculated from the epigenetic pacemaker was better able to detect nonlinear 

patterns in epigenetic age change over time. We observed a logarithmic curve of epigenetic age with 

time, where the epigenetic age increased at a higher rate until females reached sexual maturity (2-years 

old). With respect to circannual patterns, the epigenetic age increased during the summer and 

essentially stalled during the winter. Our enrichment analysis of age-related CpG sites revealed 

pathways related to development and cell differentiation, while the season-related CpGs enriched 

pathways related to central carbon metabolism, immune system, and circadian clock. Taken together, 

our results are consistent with the hibernation-aging hypothesis and may explain the enhanced 

longevity in hibernators.
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Introduction

Aging is a poorly understood natural phenomenon, characterized by an age-progressive decline in 

intrinsic physiological function1,2. The high variation in disease and functional impairment risk among 

same-age individuals shows that biological age is uncoupled from chronological age3–5. Some 

individuals age at faster rates than others, and little is known about the causes of this inter-individual 

variance in biological aging rates6,7. To this end, researchers have been attempting to develop 

biomarkers of aging4,8. DNA methylation (DNAm) based age estimators, also known as epigenetic 

clocks (ECs), are arguably the most accurate molecular estimators of age3,9–12. An EC is usually defined 

as a penalized regression, where chronological age is regressed on methylation levels of individual 

cytosines13. The EC has been successfully used to study human aging, and is becoming increasingly 

used to study aging in other species14–20.

Biological processes underpinning ECs remain to be characterized11. Age-adjusted estimates of 

epigenetic age (epigenetic age acceleration) are associated with a host of age related conditions and 

stress factors, such as cumulative lifetime stress21, smoking habits22,23, all-cause mortality24–28, and age-

related conditions/diseases13,26,29,30. These associations suggest that epigenetic age is an indicator of 

biological age5,31. In fact, measures of epigenetic aging rates are associated with longevity at the 

individual level as well as across mammalian species6,17. Several studies present evidence that long-

lived species age more slowly at an epigenetic level19,20,31–33. The link between the epigenetic aging and 

biological aging is further reinforced by the observation that treatments known to increase lifespan 

significantly slow the EC15,17.

Longevity is related to body size, but some species have longer lifespans than expected based on their 

body size34,35. A characteristic of long-lived species is the ability to engage in bouts of torpor36,37. Torpor

is a hypometabolic state characterized by a dramatic decrease in gene transcription and translation 

rates38–43. During hibernation, torpor bouts are interspersed by short periods of euthermy (< 24 h), when

gene expression occurs and metabolism is fully recovered41,44. Some of the physiological stresses from 

the cyclic transition between deep torpor and euthermy are similar to the ones experienced by the aging

body (e.g., oxidative stress), and promote responses in cellular signaling pathways that are essential for 

both longevity and torpor survival36,45. Thus, the cellular and molecular stress responses associated with

torpor-arousal cycles and long periods of inactivity may suppress aging36,45.
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Hibernation is mostly comprised of long periods of metabolic suppression, and overall metabolic rate 

reduction is associated with longevity45–47. Therefore, we hypothesize that aging is reduced during 

hibernation which we refer to as the hibernation-aging hypothesis. Specifically, a species that engages 

in torpor may periodically “suspend” aging, as previously suggested36. With this rationale, we predict 

that the epigenetic aging is faster during the active season and slower during hibernation. We test this 

prediction in yellow-bellied marmots (Marmota flaviventer), which spend 7-8 months per year 

hibernating48. Torpor bouts represent 88.6% of the yellow-bellied marmot hibernation period, resulting 

in an average energy saving of 83.3% when compared to the energetic expenditure of an euthermic 

adult48,49.

Methods

All samples were collected as part of a long-term study of a free-living population of yellow-bellied 

marmots in the Gunnison National Forest, Colorado (USA), where marmots were captured and blood 

samples collected biweekly during the their active season (May to August50). Data and samples were 

collected under the UCLA Institutional Animal Care and Use protocol (2001-191-01, renewed 

annually) and with permission from the Colorado Parks and Wildlife (TR917, renewed annually).

Individuals were monitored throughout their lives, and chronological age was calculated based on the 

date at which juveniles first emerged from their natal burrows. We only used female samples because 

precise age for most adult males is unavailable since males are typically immigrants born elsewhere51,52.

We selected 160 whole blood samples from 78 females with varying ages. From these, DNA 

methylation (DNAm) profiling worked well for 149 samples from 73 females with ages varying from 

0.01 to 12.04 years. 

Genomic DNA was extracted with Qiagen DNeasy blood and tissue kit and quantified with Qubit. 

DNAm profiling was performed with the custom Illumina chip HorvathMammalMethylChip4053. This 

array, referred to as mammalian methylation array, profiles 36 thousand CpG sites in conserved 

genomic regions across mammals. From all probes, 31,388 mapped uniquely to CpG sites (and its 

respective flanking regions) in the yellow-bellied marmot assembly (GenBank assembly accession: 

GCA_003676075.2). We used the SeSaMe normalization method to estimate β values for each CpG 

site54. 
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Two model approaches were used to study epigenetic aging in marmots: the epigenetic clock9,10 and the 

epigenetic pacemaker55–58. Both models are described below.

Epigenetic clock (EC)

Under the EC a linear correlation with age is determined by attempting to fit a single coefficient to each

CpG site. We fitted a generalized linear model with elastic-net penalization59 to the chronological-age 

and β-value data sets using the glmnet v.4.0-2 package in R60. Alpha was set to 0.5, which assigns ridge

and lasso penalties with same weight. The elastic-net penalization limits the impact of collinearity and 

shrinks irrelevant coefficients to zero. This method estimates coefficients that minimize the mean 

squared error between chronological and predicted ages, and performs an automatic selection of CpG 

sites for age prediction. We applied a 10-fold cross validation to select the model with lowest error 

based on the training set. Predicted ages were scored for samples not included in the training set of the 

model (code will be available in supplementary material). In this respect, the predicted age was 

estimated for groups of ~14 samples, resulting in 11 EC models. These models comprised 360 sites, 

and the average coefficient per site and intercept will be available in the supplementary material.

E  pigenetic pacemaker  

While ECs are used to estimate the age of a sample based on weighted sums of methylation values, the 

epigenetic pacemaker (EPM) models the dynamics of methylation across the genome. To accomplish 

this, it models each individual CpG site as a linear function of an underlying epigenetic state of an 

individual. This epigenetic state changes with time in a nonlinear fashion, and we are therefore able to 

use this paradigm to identify periods with variable rates of methylation changes throughout lifespan. 

The EPM assumes that the relative increase/decrease rate of methylation levels among sites remains 

constant, but the absolute rates can be modified when rates at all sites change in synchrony56–58. The 

optimum values of methylation change rate and initial methylation level per site, as well as the 

epigenetic state per sample, are calculated through iterations implemented in a fast conditional 

expectation maximization algorithm61 to minimize the residual sum of squares error between known 

and estimated methylation levels (β values). Thus, the epigenetic state is an estimate of age that, given 

the methylation rates and initial methylation levels for each site, minimizes the differences between 

known and estimated methylation levels in a specific sample for all sites included in the model. We 

selected sites to use in the EPM based on the absolute Pearson correlation coefficients (r) between 

chronological age and methylation levels per site57,58. All sites with r > 0.7 were included, which 
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resulted in 309 sites. A 10-fold cross validation was used to estimate epigenetic states (supplementary 

material). We report the rate and intercept values per site from the EPM using all data as training set 

(no cross validation, supplementary material).

Hibernation-aging hypothesis

We fitted two Generalized Additive Mixed Models (GAMM) with the EPM- or the EC-estimated 

epigenetic age as dependent variable. For both GAMMs, fixed effects included a cubic spline function 

for chronological age, and a cyclic cubic spline function for day of year. We also tested for the 

interaction between these two variables (using tensor product interaction with a cubic spline). 

Individual identity was added as random effect. Day of year varied from 1 to 365, with 1 representing 1

May and 365 representing 30 April.

We used simulations to estimate the type 1 error and the potential power to detect a hibernation-aging 

effect given the limitations of our sample collection. Specifically, blood samples could only be 

collected during the active season, instead of throughout the year. Our earliest sample was collected on 

27 April and the latest on 20 August. We simulated two different traits: (1) a trait that increases linearly 

with age independently of the season; and (2) a trait that increases during the summer but not during 

the winter. The daily rate of increase for the first trait was set at 0.004, to simulate data with a similar 

range to the observed EPM data. For the second trait, the rate of increase was set to zero during winter 

(16 Sept to 17 April, days 139-352 using 1 May as reference). The simulation assumed that the active 

season was 150 days long starting on 18 April (day 353) and finishing on 15 Sept (day 138). The rate of

increase during the active season was set as 0.0164 (0.004 / 365 * 150) so that the annual rate of 

increase was similar between the two simulated traits. Our simulation was parameterized using among-

individual and residual variance from the EPM. We performed these simulations using field data (day 

of sample collection, age in days, birth date, and number of samples), and estimated the significance of 

the seasonal effect (cyclic spline with days since 1 May). We repeated this procedure 1000 times for 

both traits. The proportion of simulations on trait 1 (no seasonal effect) that were significant indicated 

our type 1 error. The proportion of simulations on trait 2 (seasonal effect) that were significant was an 

indication of the power to detect this effect.

We evaluated GAMMs by checking convergence, concurvity between fixed effects and the 

autocorrelation of deviance residuals. We also checked model fit by plotting fitted with observed 

epigenetic state and visually inspected qq plots and histograms of deviance residuals, plots of deviance 
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residuals with fitted values, and plots of deviance residuals with explanatory variables. GAMMs were 

fitted and checked using the mgcv R package v.1.862.  All analysis and figures were developed in R 

v.3.6.363 in RStudio v. 1.2.503364, python v.3.7.465, Jupyter notebook v.6.0.366, ggplot2 v.3.3.0.967, and 

ggpubr v.0.2.568. 

Influence of chronological age and seasons on methylation levels per CpG site

We performed additional analyses to identify which CpG sites were associated with age and 

seasonality. We fitted a Generalized Additive Model (GAM) per CpG site, where methylation level was

the dependent variable. The independent variables were a cubic spline function for chronological age 

and a cyclic cubic spline function for day of year. 

Since epigenome wide association studies of age (EWAS) have been more commonly used to identify 

CpG sites related to chronological age, we performed a linear regression per CpG site. Each model had 

methylation level as dependent variable and chronological age as independent variable. Significance 

thresholds were set to 1x10-5.

CpG site   enrichment analysis  

Gene enrichment was performed with the Genomic Regions Enrichment Tool v.3.0.0 (GREAT  

hypergeometric test69). GREAT analyzes the potential cis-regulatory role of the non-coding regions 

with CpG sites of interest, and identifies which pathways are overrepresented in the data. To associate 

CpGs with genes, we used the “Basal plus extension” association with a maximum window distance 

between the CpG and the genes of 50 kb. GREAT tests the observed distribution of CpG neighboring 

genes against the expected number of sites associated with each pathway due to their representation in 

the mammalian array (background set). Since GREAT requires a high quality annotation, we used the 

respective locations of the marmot sites on the human assembly (GRCh37), and therefore only used 

sites mapped to conserved genes between marmots and humans. Two data sets were analyzed: sites 

associated with chronological age and with day of year. The alignment and annotation methods are 

described in the mammalian methylation array method paper53.

Results

The epigenetic aging models developed with the epigenetic clock (EC) and the epigenetic pacemaker 

(EPM) were both highly accurate (Figure 1), showing high correlations between epigenetic and 
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chronological age (r = 0.98 and 0.92, respectively). The EC used 360 CpG sites, whereas the EPM used

309 sites. There was an overlap of 72 sites between the two models.

Figure 1: Epigenetic aging models for a wild population of yellow-bellied marmots developed from the
epigenetic clock (A), and the epigenetic pacemaker (B). Points represent samples from individuals of 
known age at the sampling moment (Observed Age), and y-axis represent the epigenetic age calculated 
by each model. Trend lines were developed by fitting cubic splines.

The GAMM fitted to the predicted age from the EC explained 96.6% of the variation (Adj. R2) and had 

a residual variance of 0.346. The random effect of individual identity had an intercept variance of 

0.009. The age spline was significant (F = 1225.76, p < 0.0001) and the cyclic spline for days since 1 

May was not significant (p = 0.78). The tensor interaction smooths was also not significant (p = 0.11). 

Details of this model will be described in the supplementary material.

The GAMM fitted to the epigenetic state data explained 95.6% of the variation and had a residual 

variance of 0.284. The random effect of individual identity had an intercept variance of 0.332. Both 

smooth terms significantly influenced marmot epigenetic state (p < 0.005, Table 1), but the interaction 

between them was not significant (p = 0.44). The effect of chronological age and day of year result in a 

particular pattern of epigenetic state change (Figure 2A). The partial effect of day on epigenetic state 

shows an increase in epigenetic state during the summer and suggests a reversal of such changes during

the winter (Figure 2B). Moreover, the rate of epigenetic state increase is the highest in the mid-point of 
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the active season. The partial effect of chronological age shows that the epigenetic state increases at a 

higher rate until females reach 2-years old, followed by a deceleration as individuals become older 

(Figure 2C).

Figure 2. Visualization of the generalized additive mixed model with epigenetic states generated from 
the epigenetic pacemaker model using CpG sites highly correlated to chronological age (absolute r > 
0.7). A) Changes in the epigenetic state (or epigenetic age) as individuals age. Points are actual data, 
while lines are the predictions from the model. B) Predictions generated with the partial effect of date 
of year (cyclic cubic smoother spline) on epigenetic state. The black horizontal bar represents when 
samples were collected and most of the marmot active season. C) Predictions generated with the partial
effect of chronological age (cubic smoother spline) on epigenetic state. Buffers illustrate the 95% 
confidence intervals.
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Table 1. Output from the generalized additive mixed model using epigenetic states (or epigenetic ages) 
as dependent variable. Epigenetic states were estimated from epigenetic pacemaker models (EPM). 
Age: individual chronological age in years calculated from the first time an individual emerged from 
their mother’s burrow to the date they were captured. Date: day of the year (values varied from 1 to 
365, with 1 representing 1 May and 365 representing 30 April).

S  imulation  

From the 1000 GAMMs fitted to data simulated with a seasonal effect, 76.5% found a significant effect

of seasons, indicating high power to detect a seasonal effect given the simulated parameters and our 

data structure. From the 1000 GAMMs fitted to data simulated with a constant linear age effect, 7.3% 

had a significant season effect, indicating a slightly higher type 1 error than expected (5%). Based on 

this result from the simulations with no seasonal effect, we calculated a new critical value for the 

probability that respects the 5% type 1 error rate by estimating the 0.05 quantile of the p-value 

distribution from a null model. The 0.05 quantile was 0.0344, which can be taken as the critical value 

with which to estimate the significance of a seasonal effect. The p-value for seasonal effects on our data

is < 0.0344 and therefore is considered significant. From this, we concluded that our results were not 

driven by our sampling.
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Age-related CpGs

In the EWAS of chronological age, the methylation level of 6,364 CpGs were significantly (p < 10 -5) 

associated with chronological age. In the GAMs per site, the age effect (cubic smoother spline) was 

significant in 6,303 sites, which largely overlapped with EWAS of age (Figure 3D). From the 5,841 

sites that overlapped between the EWAS and the age effect, 66% (3,827 sites) had effective degrees of 

freedom (edf) values larger than 2 for the age effect in the GAMs. The edf measures the complexity of 

the curve, and these results imply that most CpG sites have a non-linear relationship with chronological

age. Top age-related CpGs in both EWAS and GAMs were located on NR2F1 and EVX2 downstream 

regions (Figure 3AB). The promoters of EN1 and HOXD10 were also hypermethylated with age. Age-

related sites uniquely identified by GAMs were proximal to FAM172A intron (hypermethylated), and 

hypomethylated in both CSNK1D 3`UTR and HNRNPC intron.

The 3,914 CpGs used in the enrichment analysis were located in both genic and intergenic regions 

relative to transcriptional start sites, with a higher proportion located at promoter regions than in the 

background (supplementary material). Most CpGs in promoter regions were hypermethylated with age 

(supplementary material). DNAm aging in marmots was proximal to polycomb repressor complex 

targets (PRC2, EED) with H3K27ME3 marks (supplementary material), which is a consistent observed

pattern in all mammals70. The enriched pathways were largely associated with development, cell 

differentiation and homeostasis. 

Season-related CpGs

The seasonal effect in the GAMs per site, measured with a cyclic cubic spline function of day of the 

year, was significantly associated with methylation in 47 CpG sites proximal to 37 genes. Most of the 

season-related CpGs were also associated with age (Figure 3D). Some of the top season- and age-

related CpGs are proximal to FILIP1 exon, ARHGEF12 intron, ZNF521 intron, JARID2 exon, and 

AHDC1 intron (Figure 3C). The top season sites with no association with age are proximal to AHDC1 

intron, MAZ exon, CTNNA1 exon, AUTS2 intron, and EFNA5 exon (Figure 3C). The AHDC1 intron 

seems to be an interesting region for further exploration because it is proximal to sites solely affected 

by season, to sites only related with age, and those influenced by both. Mutations in AHDC1 are 

implicated in obstructive sleep apnea (PMID 31737670), so this gene may play a role in sleep 

processes, and potentially hibernation.
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Since the seasonal effect size is smaller and more nonlinear than the age effect (Figure 2), our power to 

identify sufficient season CpGs for enrichment analysis was limited by our sample size. Thus, we 

performed a second enrichment analysis in a CpG site set selected using a less conserved false 

detection rate correction (Benjamini–Hochberg FDR71). With this method, 206 CpGs were significantly

affected by season, and 126 were used in the enrichment analysis. Some interesting biological functions

in this set included pyruvate metabolism (GO:0006090), transporters of monocarboxylates 

(GO:0008028, GO:0015355), leukocyte migration (GO:0050900), and the circadian clock system 

(GO:0032922, P00015, MP:0002562).

Figure 3. Associations of CpG sites with chronological age and seasons (day of the year) in blood of 
yellow bellied marmots (Marmota flaviventer). A, C) Manhattan plots visualizing log transformed p-
values. The y-axis reports p values for two fixed effects of the Generalized Additive Models of 
individual cytosines (dependent variable): (A) chronological age (cubic spline function) and (C) day of 
year (cyclic cubic spline function). B) The y-axis reports p values for the epigenome-wide association 
(EWAS) of chronological age. The CpG sites coordinates were estimated based on the alignment of 
Mammalian array probes to yellow-bellied marmot genome assembly. The direction of associations 
with chronological age is highlighted for the significant sites (p < 10-5) with red for hypermethylated 
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and blue for hypomethylated sites. Note that the season effect is cyclical, and we show the direction od 
association with chronological age for the active season. D) Venn diagram showing the overlap of 
significant CpG sites between EWAS and GAMs.

Discussion

Acquiring chronological-age data from wildlife is a daunting task, but age data has fundamental 

applications to behavioral ecology, evolutionary biology, and animal conservation7,72. Epigenetic clocks

(ECs) promise to inform age estimates in wild and non-model organisms14,18,72. This is the first study to 

present epigenetic aging models for marmots, a fascinating animal model to study hibernation. We 

applied a validated platform for measuring methylation levels (mammalian methylation array53) to a 

unique collection of tissues—blood samples from known age, free-living animals—to investigate how 

aging is affected by active-hibernation cycles.

The epigenetic pacemaker (EPM) results showed a rapid change in epigenetic age until marmots 

reached 2-years old, their age of sexual maturity51,73. After reaching adulthood, epigenetic age change 

was more linear and slower, which is similar to the pattern observed in humans older than 20 years57. 

The pattern observed in marmot epigenetic aging is consistent with the notion that methylation 

remodeling is associated with key physiological milestones33. A logarithmic relationship between 

methylation change rate and chronological age may be a shared trait in mammals, and such a 

relationship has been described for multiple human tissues9,55,57 and species, including dogs33, mice15, 

and yellow-bellied marmots. 

With regard to active and hibernation seasons, the EC model was unable to capture seasonal effects 

because it uses a penalized regression to relate the dependent variable (chronological age) to cytosines. 

The EPM is better equipped to detect non-linear and potentially cyclic patterns because it estimates the 

epigenetic state by minimizing the error between estimated and measured methylation levels57,58, which 

allows for a non-linear relationship of methylation levels with chronological age. Since aging rate is not

constant throughout an individual’s lifespan74,75, the EPM is possibly more influenced by factors 

associated with biological aging57. In fact, methylation levels in most CpG sites had a non-linear 

relationship with chronological age in our models per CpG site.

According to the model that used EPM-estimated epigenetic age, biological aging slows during 

hibernation. Specifically, the clear delay in epigenetic-state changes during hibernation supports our 
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hibernation-aging hypothesis. Interestingly, this hypothesis does not seem to hold for individuals prior 

to sexual maturity. Even though we observed a non-significant interaction between chronological age 

and day of year, our model predictions indicated a weaker deceleration in aging during hibernation for 

individuals in their first and second years of life (Figure 2A). Compared to adults, young marmots 

spend less time torpid during hibernation, have higher daily mass loss in deep torpor48, and may 

immerge into hibernation weeks later76–78. Indeed, thermoregulatory support from adults increases 

overwinter survival of young alpine marmots79–81. Thus, a weaker effect of slowed aging during 

hibernation in younger animals may be explained by their later hibernation start date in addition to an 

overall higher metabolic rate during hibernation.

Some of the physiological stresses experienced by individuals during hibernation are similar to those 

observed with aging, and therefore the molecular and physiological responses required for an 

individual to successfully hibernate may prevent aging36,45. Additionally, hibernation combines 

conditions known to promote longevity36,45,82, such as food deprivation (calorie restriction83–85), low 

body temperature82,86–88, and reduced metabolic rates45. Conceivably, these factors may also be 

associated with the slower marmot aging observed in the beginning and end of their active season 

(Figure 2B). Marmots in early Spring and late Fall have limited calorie intake78,89, reduced overall 

activity89–91, and lower metabolic rate92 than during Summer. Because molecular and physiological 

events associated with hibernation are similar among mammals36,41,44,93, the within active season 

variation in epigenetic aging rate may occur in other mammals. For instance, free-living arctic ground 

squirrels begin dropping body temperature 45 days before hibernation94, 13-lined ground squirrels 

drops food consumption by 55% prior to hibernation95, and some species exhibit short and shallow 

torpor bouts before and after hibernation96.

DNA methylation (DNAm) aging in marmots was related to genes involved in several developmental 

and differentiation processes—as seen in other mammals17,19,72,97. This common enrichment across 

mammals implies an evolutionary conservation in the biological processes underpinning aging. This 

inference has been further reinforced by a recent study developing ECs capable of accurately predicting

chronological age in distantly related species and, in theory, in any mammal species70. These “universal

clocks” for eutherians can be used in any tissue sample and are developed from CpG sites located in 

conserved genomic regions across mammals53.

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2021.03.07.434299doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.07.434299
http://creativecommons.org/licenses/by-nc-nd/4.0/


Seasonally dynamic methylation levels were identified in 47 CpG sites. Although few CpGs were 

identified in our analysis per site, the effect of season was detected by the EPM algorithm, which 

represents methylation changes in all sites correlated (r > 0.7) with chronological age63,64. Thus, 

seasonality probably influences many more CpGs in common with aging than we were able to detect. 

Nevertheless, many of the top season-related sites were proximal to genes with circannual patterns in 

other species. For instance, AUTS2 is differently expressed among seasons and within hibernation in 

brown adipose tissue of 13-lined ground squirrels98 and its proximal CpGs are differentially methylated 

in blood and liver throughout the reproductive season of great tits99. JARID2 is differentially expressed 

within hibernation in the cerebral cortex of 13-lined ground squirrels100 and seasonally expressed in 

human peripheral blood mononuclear cells101. RUFY3 is differentially expressed between active and 

hyperphagia phases in the subcutaneous adipose tissue of grizzly bears102 and is close to season-related 

CpGs in great tits103. Methylation levels of sites close to FILIP1, AHDC1, ARHGEF12, ZNF521, 

CTNNA1 and AUTS2 vary seasonally in great tits103. ARHGEF12 is also upregulated in songbirds 

exhibiting migratory behavior104. The expression of these genes may thus be of some importance to 

species with seasonal behavior, including in hibernating and non-hibernating species.

Since hibernation depends on the synchrony of all regulatory stages45 and profoundly alters physiology,

most pathways are affected by season in hibernating species. However, little is known about the 

molecular regulation of seasonal rhythms, and our results imply a role for DNA methylation in 

regulating some circannual processes, as previously suggested105. Seasonal changes in central carbon 

metabolism and immune responses are expected because immune function is downregulated during 

hibernation106, and the reliance on carbohydrates as energy source is switched for lipid metabolism44,45. 

Remarkably, the circadian clock system was enriched by CpGs related to seasonality. Seasonal changes

in photoperiod are encoded in the circadian clock, and modify gene expression in core-clock genes as 

well as in clock-controlled genes107–109.

In sum, our main finding was the little to no change in epigenetic aging during hibernation. While 

hibernation may increase longevity by protecting individuals from predators and diseases37, we suggest 

that the biological processes involved in hibernation are important contributors to the long lifespan seen

in hibernators. Since the reduction of metabolic rates is reached through similar molecular and 

biochemical patterns across the animal kingdom110, the wide inter- and intra-specific variation of torpor 

use in nature should be explored for more insights about the interplay between aging and torpor.
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Epigenetic data will be deposited in Gene Expression Omnibus.
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