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Abstract 48 

The coronavirus disease 2019 (COVID-19) pandemic has dramatically altered human activities, 49 

potentially relieving human pressures on urban-dwelling animals. Here, we evaluated whether 50 

birds from five cities in five countries (Czech Republic – Prague, Finland – Rovaniemi, 51 

Hungary – Budapest, Poland – Poznan, and Australia – Melbourne) changed their tolerance 52 

towards human presence (measured as flight initiation distance) during the COVID-19 53 

shutdowns. We collected 6369 flight initiation distance estimates for 147 bird species and found 54 

that birds tolerated approaching humans to a similar level before and during the COVID-19 55 

shutdowns. Moreover, during the shutdowns, bird escape behaviour did not consistently change 56 

with the level of governmental restrictions (measured as the stringency index). Hence, our 57 

results indicate that birds do not flexibly and quickly adjust their escape behaviour to the 58 

reduced human presence; in other words, the breeding populations of urban birds examined 59 

might already be tolerant of human activity and perceive humans as relatively harmless. 60 

 61 

Keywords: antipredator behaviour; lockdown; escape distance; habituation; human-induced 62 

rapid environmental change; urbanisation 63 

64 
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1. Introduction 65 

The actions taken to control the coronavirus disease 2019 (hereafter COVID-19) pandemic have 66 

locked inhabitants in their dwellings and thus changed the pattern of human outdoor activities 67 

(Fang et al. 2020; Gatto et al. 2020; Huang et al. 2020; Kraemer et al. 2020; Randler et al. 68 

2020; Venter et al. 2020a, b; March et al. 2021). This situation created a quasi-experiment that 69 

offers a unique opportunity to study how rapid changes in human behaviour affect wildlife 70 

(Derryberry et al. 2020; Manenti et al. 2020; Rutz et al. 2020; Zellmer et al. 2020; Soga et al. 71 

2021; Soto et al. 2021). The shifts in human activity linked to the COVID-19 pandemic were 72 

tangible particularly in urban areas (Rutz et al. 2020; Park et al. 2021). Consequently, the 73 

COVID-19 shutdowns have elicited a complex mixture of positive and negative effects on 74 

urban nature (Bates et al. 2021), including changes in animal behaviour (Derryberry et al. 2020; 75 

Montgomery et al. 2021; Vardi et al. 2021).  76 

The coexistence of wild animals with humans requires animals to tolerate human presence and 77 

consequent disturbance (Samia et al. 2015; Ducatez et al. 2020). Nevertheless, urban-dwelling 78 

animals are more tolerant of human approach than their rural conspecifics (Díaz et al. 2013; 79 

Samia et al. 2015, 2017; Mikula et al. 2021). Yet, how the intensity of human presence (e.g. 80 

human population or pedestrian density) precisely shapes the escape behaviour of urban animals 81 

is less clear. While some studies have revealed that tolerance to humans increased with 82 

increasing human presence at studied sites (Webb & Blumstein 2005; Mikula 2014), other 83 

studies reported much weaker, none or even opposite effects (Morelli et al. 2018; 84 

Gnanapragasam et al. 2021; Mikula et al. 2021). Whether the COVID-19 shutdowns induced 85 

changes in human activities which then altered the urban-landscape of fear is unknown. 86 

The COVID-19 shutdowns locked people at homes and reduced their mobility within cities 87 

(Geng et al. 2021; Wu et al. 2021; but see Venter et al. 2020b) and thus created a natural 88 

experimental condition which could have affected the tolerance of urban animals towards 89 

humans (usually quantified as flight initiation or escape distance) in three ways. First, the lack 90 

of or reduced human presence during shutdowns might result in decreased animal tolerance to 91 

humans and consequently increased escape distances because (a) some studies have reported 92 

that animal tolerance decreases on the gradient from heavily human-visited (“disturbed”) sites 93 

to sites with low human activity (Webb & Blumstein 2005; Mikula 2014) and (b) escape 94 

distances of urban birds may also increase if less tolerant individuals and species colonise or at 95 

least increase their detectability in human-emptied landscapes (Manenti et al. 2020; Gordo et 96 

al. 2021). Second, due to reduced human activity, animal vigilance (i.e. the time spent 97 
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monitoring for potential threats) might decrease, which in turn could increase animal tolerance 98 

to human presence because animal vigilance is often positively correlated with escape distance 99 

(Samia et al. 2013; Samia & Blumstein 2015), leading to reduced escape distances during the 100 

shutdowns (Montgomery et al. 2021). Third, animal responses to human disturbance may not 101 

change during the shutdowns if animals are already habituated to human activity and generally 102 

consider humans as harmless. Indeed, keeping escape distances constant may reduce 103 

unnecessary responses even when encounters are less frequent or reduction of already short 104 

escape distances may be constrained). In addition, if animals changed their escape distance 105 

during COVID-19 shutdowns, we expect that the change would follow the levels of 106 

governmental restrictions (stringency index) since the stringency index was negatively 107 

associated with human use of urban parks (Geng et al. 2020). 108 

Here, we explored variation in avian tolerance towards humans before (breeding seasons before 109 

March 2020) and during the COVID-19 shutdowns (breeding seasons 2020–2021), and whether 110 

the tolerance to humans during the COVID-19 shutdowns changed according to the level of 111 

governmental restrictions. Avian tolerance towards human disturbance was measured as the 112 

flight initiation distance, the distance from an approaching human observer at which bird starts 113 

to escape (Albrecht & Klvaňa 2004; Stankowich & Blumstein 2005; Blumstein 2006; Weston 114 

et al. 2012; Díaz et al. 2013) and measured in four European cities (the Czech Republic – 115 

Prague; Finland – Rovaniemi; Hungary – Budapest; Poland – Poznan) and one in Australia 116 

(Melbourne). 117 

 118 

2. Materials and Methods 119 

2.1. Study areas 120 

Flight initiation distances were collected in the Czech Republic (~90% of data collected by 121 

P.M.; the rest were collected by F.M., Y.B., K.F., A.S. and F.A.Z.), Finland (J.J. and field 122 

assistant), Hungary (G.M. and S.S.), Poland (P.T.), and Australia (M.W. and field assistants). 123 

All field data were collected during the breeding season (Europe: 1 April – 1 August; Australia: 124 

15 August – 15 March) and only in urban areas, i.e. areas with continuous urban elements, 125 

including multi-story buildings, family houses, or roads, with built-up area >50%, building 126 

density >10/ha, residential human density >10/ha (Marzluff et al. 2001). Most data were 127 

collected in urban green areas, particularly parks and cemeteries. Czech data were collected in 128 
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Prague (50.083°N, 14.417°E; 1.3 million inhabitants, 177–399 m a. s. l.), Finnish in Rovaniemi 129 

(66.5°N, 25.733°E; 64,000 inhabitants, 75–203 m a. s. l.), Hungarian in Budapest (47.498°N, 130 

19.041°E; 1.8 million inhabitants, 96–527 m a. s. l); Polish in Poznań (52.406°N, 16.925°E; 131 

0.53 million inhabitants, 60–154 m a. s. l.); and Australian in Melbourne (37.821°S, 144.961°E; 132 

5.2 million inhabitants, 5–169 m a. s. l.). For each city, we collected data for two breeding 133 

seasons before the pandemic, covering the 2018 and 2019 seasons immediately preceding the 134 

emergence of the COVID-19 (Finland, Hungary, Poland; and until March 2020 in Australia) 135 

and for up to two breeding seasons during the COVID-19 shutdowns (seasons starting in 2020 136 

and 2021, for the Czech Republic, only starting in 2021). The 2019 data were not available for 137 

the Czech Republic, and thus we used 2014 and 2018. The flight initiation distances were 138 

collected during favourable weather conditions (i.e. no rain and no strong wind) mainly during 139 

the weekdays and during the early mornings (till 10:00). 140 

 141 

2.2. Avian tolerance towards humans 142 

Avian tolerance towards human approaches (“disturbance”) was estimated by a simple but 143 

widely used method, the flight initiation distance, i.e. the distance at which birds escape when 144 

approached by a human observer (Stankowich & Blumstein 2005; Blumstein 2006; Weston et 145 

al. 2012; Díaz et al. 2013). The flight initiation distance reflects a trade-off between the fitness-146 

related benefits of not escaping and the costs of fleeing (Ydenberg & Dill 1986; Albrecht & 147 

Klvaňa 2004; Stankowich & Blumstein 2005; Samia et al. 2016). The flight initiation distance 148 

estimates are highly consistent for individuals, populations, and species tested within similar 149 

contexts (Carrete & Tella 2010; Díaz et al. 2013; Guay et al. 2016; Mikula et al. 2018).  150 

All data were collected by trained researchers skilled in bird identification, and using a standard 151 

procedure outlined previously (Blumstein 2006; Samia et al. 2015; Mikula et al. 2018, 2021). 152 

Briefly, when a focal bird was spotted, a single observer moved at a normal walking speed (~1 153 

ms-1) directly towards the bird (with head and gaze oriented towards this bird). When the focal 154 

bird first started to escape (i.e. hopped, walked, ran, or flew away), the distance of the observer 155 

to the bird was noted. The escape distance was measured either by counting the number of ~1 156 

m long steps, counting the number of steps of known approximate length and converting them 157 

to metres or using a rangefinder (with ±1 m resolution). The escape distance of birds positioned 158 

above the ground (e.g. perching on vegetation) was estimated as the Euclidean distance that 159 

equals the square-root of the sum of the squared horizontal distance and the squared height 160 
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above the ground. We approached only individuals without initial signs of distress. Birds often 161 

occur in flocks; in these cases, we randomly selected a single individual from a flock and 162 

measured its response. All fieldworkers wore outdoor clothes without any bright colours. 163 

Within each city we collected data at many sites (at the level of park, cemetery, etc.); to avoid 164 

repeated sampling of the same individuals, we did not re-sample the same location during the 165 

same breeding season. Within the sampling occasion at a given site, the same species 166 

individuals were sampled only if it was obvious that they represent different individuals (e.g. 167 

because of their concurrent presence or if morphological features, e.g. sex-specific colouration 168 

or age, enabled us to distinguish between different individuals). In total, we collected 6369 169 

flight initiation distance estimates for 147 bird species representing 2693 before-shutdowns 170 

estimates for 68 species and 3676 during-shutdowns estimates for 135 species.  171 

 172 

2.3. Predictors and covariates 173 

Each observation was scored as collected before (0) or during (1) the COVID-19 shutdowns 174 

(hereafter “Period”).  175 

To further explore whether changes in human activity during the shutdowns affected avian 176 

escape behaviour, we extracted data for each country and day on the strength of governmental 177 

measures characterised by governmental stringency index (hereafter “stringency index”) from 178 

Our World in Data database (https://ourworldindata.org/covid-stringency-index, based on data 179 

originally published in Hale et al. (2021)). This index is rescaled to values from 0 to 100 (0 = 180 

no restrictions; 100 = strictest restrictions) and represents a composite measure based on nine 181 

response indicators, including school closures, workplace closures, cancellation of public 182 

events, restrictions on public gatherings, closures of public transport, stay-at-home 183 

requirements, public information campaigns, restrictions on internal movements, and 184 

international travel controls.  185 

Life-history, social, contextual and environmental factors may influence escape responses of 186 

birds and potentially confound associations between avian escape responses and changes in 187 

human outdoor activity before and during the COVID-19 shutdowns. Hence, we extracted 188 

information on seven parameters. (1) The ‘starting distance’ (Blumstein 2006; Weston et al. 189 

2012; Mikula et al. 2018) was estimated as the distance to the bird (in metres) when an observer 190 

started the escape distance trial. (2) The ‘flock size’ (Samia et al. 2015; Mikula et al. 2018; 191 
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Morelli et al. 2019) was calculated as the number of all conspecific individuals moving, 192 

feeding, or perching together that were visually separated from other conspecific or mixed-193 

species individuals. Note that we avoided approaching mixed-species bird groups. (3) The 194 

species-specific ‘body size’ (Stankowich & Blumstein 2005; Díaz et al. 2013) was 195 

approximated as body mass (in grams) and obtained as the mean of female and male values 196 

from EltonTraits 1.0 database (Wilman et al. 2014). (4) The ambient ‘temperature’ (Reynolds 197 

et al. 2020) was estimated as the air temperature (°C) at the site during the data collection. (5) 198 

The ‘time’ of data collection (in hours) (Piratelli et al. 2015) was rounded to the nearest hour. 199 

(6) The date of data collection (Legagneux & Ducatez 2013; Piratelli et al. 2015; Mikula et al. 200 

2018) was noted as a ‘day’ since the start of the breeding season (Europe: Day 1 = 1 April; 201 

Australia: Day 1 = 15 August). (7) The ‘site’ represents a unique identifier of each sampled 202 

park, cemetery, the city district, etc. 203 

 204 

2.4. Statistical analyses 205 

We used R version 4.3.0 (R Development Core Team 2021) for all statistical analyses. We used 206 

two sets of mixed effect models.  207 

First, we explored the differences in escape behaviour of birds before and during the COVID-208 

19 shutdowns by fitting the flight initiation distance (ln-transformed) as a response variable and 209 

a Period (0 – before, 1 – during shutdowns) as a predictor of interest, while controlling for 210 

starting distance (ln-transformed), flock size (ln-transformed), temperature (also a proxy for a 211 

day within the breeding season: rPearson = 0.48; Fig. S1) and time of day. To account for circular 212 

properties of time, time was transformed into radians (2 × time × π/24) and fitted as sine and 213 

cosine of radians (Bulla et al. 2016). All continuous variables were standardised by subtracting 214 

the mean and dividing by the standard deviation. Potential multicollinearity among explanatory 215 

variables was checked by the correlation matrix, which suggested that correlations between 216 

variables were generally weak (Fig. S1). To account for the non-independence of data points 217 

(Schielzeth & Forstmeier 2009; Barr et al. 2013), we attempted to fit random intercepts of year, 218 

genus, species, species at a given day and year, country, site, and species within a site, while 219 

fitting Period as random slope within all random intercept, except for year and species at given 220 

day and year. We then simplified the random structure of the model to avoid singular fit (Barr 221 

et al. 2013), i.e. a situation when one or more random effects are estimated as zero or close to 222 

zero. The outcomes of the models with alternative random structures were similar (Fig. S2; 223 
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Table S1). We used this approach with a full dataset with all observations (n = 6369), as well 224 

as with conservative datasets, one with at least five observations per species and Period (i.e. at 225 

least five observations before and five during the COVID-19 shutdowns; n = 5260), the other 226 

with at least 10 observations per species and each Period (n = 5106).  227 

Second, we explored whether the escape behaviour of birds during the COVID-19 shutdowns 228 

was modulated by the varying levels of governmental restrictions, the stringency index. We 229 

thus used only data gathered during the shutdowns (i.e. Period = 1; n = 3676) and adopted the 230 

same models and the same random structure simplification procedure as for the first set of 231 

models on Period, but using stringency index instead of Period and year as fixed (not as random) 232 

effect. Similarly, as in the models for Period, varying the random structure did not influence 233 

the outcomes of the models, nor did limiting species to only those with at least five or at least 234 

10 observations (Fig. S2; Table S2). 235 

The models were fitted with the lme4 package (Bates et al. 2015). We then used the sim function 236 

from the arm package and a non-informative prior distribution (Gelman & Hill 2007; Gelman 237 

& Su 2018) to create a sample of 5,000 simulated values for each model parameter (i.e. posterior 238 

distribution). We report effect sizes and model predictions by the medians, and the uncertainty 239 

of the estimates and predictions by the Bayesian 95% credible intervals represented by the 2.5 240 

and 97.5 percentiles (95% CI) from the posterior distribution of 5,000 simulated or predicted 241 

values. We graphically inspected the goodness of fit, and the distribution of the residuals (see 242 

Bulla et al. 2022).  243 

As the need for phylogenetic control depends on the phylogenetic signal in the residuals of the 244 

model (Uyeda et al. 2018), we tested whether the residual variance contained a phylogenetic 245 

signal. Thus, we extracted the residuals from the model on full data, presented in the main text 246 

(Fig. 1 – all data estimates; Period: Table S1 – model 1d, Stringency index: Table S2 – model 247 

1c), and fitted the residuals as a new response variable in an intercept-only Bayesian linear 248 

regression fitted with STAN (Stan Development Team 2022) using brm function from brms 249 

package v. 2.17 (Bürkner 2017, 2018), with species and their phylogenetic relatedness as 250 

random effects. The phylogenetic relatedness was included as a phylogenetic covariance matrix 251 

calculated with inverseA function in the MCMCglmm v. 2.33 package (Hadfield 2010) from 252 

the maximum credibility tree build using maxCladeCred function in the phangorn v. 2.8.1 253 

package (Schliep 2011) and 100 randomly sampled species-level phylogenetic trees (Hackett 254 

backbone) from BirdTree online tool (http://birdtree.org) (Jetz et al. 2012). Priors were 255 
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specified using the get_prior function from brms, which uses Student’s t distribution for the 256 

intercept and standard deviation (Bürkner 2017). The target average proposal acceptance 257 

probability was increased to 0.99 to make the sampling more conservative to posterior 258 

distributions with high curvature (Bürkner 2017). Five MCMC chains ran for 5,000 iterations 259 

each while discarding the first 2,500 iterations as burn-in, and sampling every 5th iteration, 260 

which resulted in 5,000 samples of model parameters. The independence of samples in the 261 

Markov chain was assessed using graphic diagnostics and the convergence using the Gelman-262 

Rubin diagnostics which was 1 for all parameters, indicating model convergence (Brooks & 263 

Gelman 1998). Phylogeny explained zero (for Period model, 95%CI: 0–0.2% of variance in 264 

random effects) or little variation (3.6% [0–16%] for a Stringency index model) and the models 265 

without phylogeny fitted the data on residuals better than the models with phylogeny (i.e. the 266 

estimated Bayes factor in favour of non-phylogenetic model was 155 for Period and 100 for 267 

Stringency index, their posterior probabilities 0.995 and 0.986 respectively), which justifies our 268 

use of non-phylogenetic comparative methods. 269 

All results are reproducible with the open-access data and code available from Bulla et al. 270 

(2022), which also provides visual representations of model assumptions. 271 

 272 

3. Results 273 

We found no consistent differences in avian tolerance towards humans (i.e. in their escape 274 

distance) before and during the COVID-19 shutdowns (Figs 1a, 2, S2–S4; Table S1). Moreover, 275 

during the shutdowns, we found no clear changes in escape distance in relation to the strength 276 

of governmental COVID-19 restriction, i.e. stringency index, (Figs 1b and 3; Table S2). These 277 

results were robust to changes in random effects structure and sample size (Fig. S2; Tables S1 278 

and S2). The within and between species responses highly varied and changed within and 279 

between species, as well as within and between sites and years (Figs 2 and 3, Figs S3 and S4). 280 

 281 

4. Discussion 282 

Our observations of avian tolerance towards humans (measured as escape distance) revealed 283 

that populations of urban birds did not exhibit major shifts in their tolerance towards humans 284 

(a) between periods before and during the COVID-19 shutdowns and (b) as a function of the 285 

stringency of governmental COVID-19 restrictions. Responses to both the shutdowns and the 286 
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stringency of governmental restrictions varied widely across spatial and temporal scales. 287 

Altogether, our results indicate that escape responses of sampled breeding populations of urban 288 

birds are unaffected by temporal changes in human presence and abundance at studied sites. 289 

This is consistent with some degree of urban tolerance not being further modified by even 290 

dramatic changes in human activity patterns and could reflect the (1) differential settlement of 291 

bold and shy individuals in and outside cities, (2) natural selection on urban tolerance, or (3) 292 

habituation-like processes reducing plasticity.  293 

First, the escape distance of birds is an individual trait, i.e. flight initiation distance is highly 294 

consistent within individuals tested under similar contexts (Carrete & Tella 2010; Díaz et al. 295 

2013; Guay et al. 2016; Mikula et al. 2018). If the urban environment filters birds based on 296 

inherent levels of tolerance towards human disturbance with bold and shy individuals inhabiting 297 

areas with varying levels of human disturbance (Carrete & Tella 2010, 2013; van Dongen et al. 298 

2015), the lack of consistent change in escape behaviour of urban birds during the COVID-19 299 

shutdowns may indicate an absence or generally low influx of shy, less tolerant individuals and 300 

species from rural areas into studied cities. Although some studies have reported animal species 301 

that occupied new areas changed their local abundance, or shifted the timing of their main 302 

activity in response to change in human activities during the COVID-19 pandemic, these 303 

changes are often area- or species-specific and did not occur everywhere (Manenti et al. 2020; 304 

Bates et al. 2021; Gordo et al. 2021; Vardi et al. 2021). Importantly, it remains to be shown 305 

whether such “changes” in animal behaviour are real or an artefact of increased activity of 306 

researchers and citizen scientists in cities during the COVID-19 pandemic (Basile et al. 2021; 307 

Crimmins et al. 2021; Hochachka et al. 2021; Randler et al. 2021).  308 

Second, another possibility is that the lack of change in avian tolerance towards humans is a 309 

result of an adaptation to urban lifestyle, i.e. evolutionary change in escape response due to 310 

natural selection on urban tolerance (Symonds et al. 2016). Species entering urban 311 

environments have larger brains (Sayol et al. 2020), greater innovation and problem-solving 312 

abilities (Audet et al. 2016; Ducatez et al. 2017; Griffin et al. 2017), are less neophilic and 313 

habituate to novel conditions faster than rural birds (Tryjanowski et al. 2016; Vincze et al. 314 

2016; Griffin et al. 2017). Indeed, birds that colonised urbanised areas earlier are more tolerant 315 

toward humans (Symonds et al. 2016). Yet, it is possible that avian tolerance reaches limits 316 

(e.g. in an extreme case, not escaping would translate to being stepped upon) after several 317 

generations living in cities. Indeed, escape responses persist in even the most habituated birds. 318 

Our results may thus indicate that natural selection on escape behaviour of these species living 319 
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in the cities is currently at an optimum; hence, the changes in human presence associated with 320 

COVID-19 shutdowns were insufficient and too temporary to select for different escape 321 

distances. 322 

Third, our results may indicate that the examined breeding populations of birds were already 323 

habituated to or otherwise tolerant of human presence and abundance and humans might have 324 

been generally perceived as harmless, irrespective of the number of people outside (Ellenberg 325 

et al. 2009; Rankin et al. 2009; Zaccaroni et al. 2010). Previous studies have found that changes 326 

in human density and activity may strongly influence escape behaviour of animals, especially 327 

when working with dichotomic comparison of natural (rural) and human-inhabited (urban) 328 

areas (Díaz et al. 2013). For example, neotropical birds occurring close to small and recently 329 

established human settlements, such as farms, have dramatically shorter escape distances (i.e. 330 

higher tolerance towards humans) than their counterparts living further from these settlements 331 

(Tryjanowski et al. 2020). However, studies exploring associations between escape behaviour 332 

of animals and various human activity regimes within urban areas revealed mixed results, 333 

indicating that within urban areas association between escape behaviour of animals and human 334 

density is often absent or weak (Morelli et al. 2018; Mikula et al. 2021). Such a finding, along 335 

with ours, contradict the expectation that “...we expect location-specific habituation where even 336 

a slight deviation in a predator’s (or human’s) routine behaviour can re-elicit fearful responses” 337 

(Samia et al. 2015). Our results indicate a minor role of behavioural plasticity in observed 338 

patterns and may indicate that habituation-like processes have already reduced plasticity.  339 

Finally, worldwide, quarantine and stay-at-home orders have reduced the use of public spaces, 340 

particularly in cities. Yet, the changes in the use of public spaces during COVID-19 shutdowns 341 

seem to be country specific and dependent on the type of the public space (Derryberry et al. 342 

2020; Randler et al. 2020; Rutz et al. 2020; Venter et al. 2020b; Geng et al. 2021). For example, 343 

the restrictions on social gathering and movement, as well as the closures of workplaces and 344 

indoor recreational facilities were associated with increased visits to parks in Norway (Venter 345 

et al. 2020b). However, on a global scale stay-at-home restriction and the stringency of 346 

governmental restrictions was negatively correlated with park visitation (Geng et al. 2020). 347 

Thus, the lack of a general change in escape distances of birds during COVID-19 shutdowns in 348 

our sample might be due to heterogeneous effects of country-specific governmental measures 349 

on human densities across cities and their outdoor space. We note that country explained up to 350 

15% in escape distance during the COVID-19 shutdowns (Table S2), country and site explained 351 

little variance in the escape distance before and during the COVID-19 shutdowns (Table S1), 352 
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escape distance changed stochastically across years and species (Fig. S4) and country-specific 353 

effects were largely absent in our data (Figs 2 and 3) suggesting inconsistent effects even within 354 

the countries (cities). Importantly, the changes in use of urban green-spaces during the COVID-355 

19 shutdowns should be similar within a specific city. Thus, even if the use of public green 356 

spaces increased in some of our studied cities and decreased in others, we should, but do not, 357 

see consistent city-specific escape distance responses of the studied species (Figs 2, 3, S3 and 358 

S4). In other words, despite dramatic changes in human outdoor presence the studied 359 

populations of birds did not adjust their tolerance to humans again supports the idea that the 360 

urban bird populations are already habituated to human presence and resilient to fluctuations in 361 

human densities and encounters. The results of our study might also help to explain why several 362 

previous studies haven’t detected increased probability of occurrence of wildlife in emptied 363 

cities (e.g. Gordo et al., 2021; Vardi et al., 2021) – even lower than casual human activity in 364 

cities may require sharp behavioural adjustments in wild-living animals. 365 

In conclusion, human population, and hence disturbance, is predicted to further increase during 366 

the 21st century (Sanderson et al. 2002). Therefore, animals will be increasingly forced to 367 

occupy human-altered environments, and altered environments will host more humans. Our 368 

results indicate that urban birds do not flexibly and quickly modify their escape behaviour to a 369 

temporarily reduced human presence, rather the birds had similar levels of tolerance towards 370 

humans in pre- and during-pandemic periods, and regardless of the stringency of governmental 371 

measures. In other words, our results reveal a degree of urban tolerance that is not further 372 

modified by even dramatic changes in human activity patterns. Whether such tolerance reflects 373 

a differential settlement of individuals in cities, natural selection on urban tolerance, or 374 

habituation-like processes that reduce plasticity requires detailed investigation. Studies of 375 

individually-marked birds that are repeatedly tested over time (sensu Carrete & Tella 2010, 376 

2013), will be particularly important as will unambiguous quantification of individual birds’ 377 

history of exposure to humans. There is an important role of experimental manipulations of 378 

human densities in the studied areas and on capitalising on large changes in population size 379 

over short periods of time which might be associated with natural disasters as well as rapid 380 

urban development. These observations of animal behaviour under various regimes of human 381 

activity and disturbance can help us quantify costs and benefits of behavioural responses to 382 

humans. Such insights help us better understand how species tolerate humans and, importantly, 383 

how urbanisation modifies behaviour.  384 

 385 
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Figure 1. Changes in avian tolerance towards humans (measured as the flight initiation 649 

distance) (a) before vs during the COVID-19 shutdowns and (b) due to stringency of 650 

governmental restrictions during COVID-19 shutdowns. The dots with horizontal lines 651 

represent estimated standardised effect size and their 95% confidence intervals based on the 652 

joint posterior distribution of 5000 simulated values generated by the sim function from the arm 653 

package (Gelman et al. 2016) using the mixed model outputs (Tables S1 and S2). The colour 654 

highlights the investigated association with Period before vs during the COVID-19 shutdowns 655 

– (blue) and stringency index (green). Depicted are effect sizes based on full and reduced 656 

datasets with ≥5 or ≥10 observations per species and period. Note that all estimates centre 657 

around zero. 658 
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Figure 2. Avian tolerance towards humans (measured as the flight initiation distance) before 661 

and during the COVID-19 shutdowns according to genus. Dots represent means or single escape 662 

distance observations of species at specific sites (e.g. specific park or cemetery) with data for 663 

both periods (before and during the shutdowns) and not corrected for other factors such as 664 

starting distance of the observer. Dot colour highlights the country (Australia in violet, the 665 

Czech Republic blue, Finland turquoise, Hungary green, and Poland yellow). Dotted lines 666 

indicate no difference, dots above the line indicate lower tolerance towards humans (i.e. longer 667 

escape distances), dots below the line indicate lower tolerance before than during the COVID-668 

19 shutdowns. Panels are ordered according to evolutionary history of birds with top left panels 669 

representing the oldest genera, and bottom right, the youngest. Panel titled ‘other’ contains 670 

genera with only one or two data points. The axes are on the log-scale. Note the within- and 671 

between-genera and cross-country variation and stochasticity in response to the shutdowns (for 672 

species-specific plots see Fig. S3, for within- and between-year variation Fig. S4) and that using 673 

escape distance values controlled for starting distance had little influence on the depicted 674 

relationships (Fig. S5). Silhouette of Garrulus glandarius, Motacilla alba, Picus viridis, 675 

Phoenicurus ochruros, Sylvia borin were drawn by Martin Bulla and are available at 676 

https://doi.org/10.17605/OSF.IO/WUZH7 (Bulla et al. 2022), silhouette of Erithacus rubecula 677 

drawn by Rebecca Groom, and silhouettes of Fringilla coelebs and Sturnus vulgaris by Maxime 678 

Dahirel and available at PhyloPic (http://phylopic.org); all these silhouettes are under Creative 679 

Commons Attribution 3.0 Unported licence (https://creativecommons.org/licenses/by/3.0/). 680 

The remaining silhouettes are available at PhyloPic under the Public Domain Dedication 1.0 681 

license (https://creativecommons.org/publicdomain/zero/1.0/). 682 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 16, 2022. ; https://doi.org/10.1101/2022.07.15.500232doi: bioRxiv preprint 

http://phylopic.org/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://doi.org/10.1101/2022.07.15.500232
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

  683 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 16, 2022. ; https://doi.org/10.1101/2022.07.15.500232doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.15.500232
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

Figure 3. Species-specific avian tolerance towards humans (measured as the flight initiation 684 

distance) in relation to severeness of governmental restrictions during COVID-19 shutdowns 685 

quantified as a stringency index. Each dot represents a single escape distance observation (not 686 

corrected for other factors such as starting distance of the observer) and a day-specific value of 687 

governmental stringency index in a given country. Dot colour highlights the country (Australia 688 

in violet, the Czech Republic blue, Finland turquoise, Hungary green and Poland yellow). Grey 689 

lines represent locally weighted smoothing, a non-parametric local regression fitted with the 690 

ggplot function of ggplot2 package (Wickham 2016), highlighting heterogenous (and usually 691 

unclear) within- and between- species trends. Note, the y-axes is on the log-scale, some species 692 

lack trend lines because data distribution hindered the smoothing and visualised are only data 693 

for species with ≥10 escape distance observations. 694 
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