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Aging, often considered a result of random cellular damage, canbe
accurately estimated using DNA methylation profiles, the foundation of
pan-tissue epigenetic clocks. Here, we demonstrate the development of
universal pan-mammalian clocks, using 11,754 methylation arrays from

our Mammalian Methylation Consortium, which encompass 59 tissue

types across 185 mammalian species. These predictive models estimate
mammalian tissue age with high accuracy (r> 0.96). Age deviations correlate
with human mortality risk, mouse somatotropic axis mutations and caloric
restriction. We identified specific cytosines with methylation levels that
change with age across numerous species. These sites, highly enriched

in polycomb repressive complex 2-binding locations, are near genes
implicated in mammalian development, cancer, obesity and longevity.

Our findings offer new evidence suggesting that aging is evolutionarily
conserved and intertwined with developmental processes across all

mammals.

Aging is associated with multiple cellular changes that are often tis-
sue specific’. Cytosine methylation, however, stands out, as it allows
for the development of pan-tissue aging clocks (multivariate age
estimators) that are applicable to all human tissues®*. The subse-
quent development of similar pan-tissue clocks for mice and other
species suggests a conserved aspect to the aging process’’, thereby
challenging the belief that aging is solely driven by random cellular
damage accumulated over time. To investigate this, we sought to
(1) develop universal age estimators applicable to all mammalian
species and tissues (pan-mammalian clocks) and (2) identify and
characterize cytosines with methylation levels that change with age
across all mammals. For this purpose, we employed the mammalian
methylation array, which we recently developed to profile methyla-
tion levels of up to 36,000 CpG sites with flanking DNA sequences
highly conserved across the mammalian class®. We employed such
profiles from 11,754 samples from 59 tissue types, originating from
185 mammalian species across 19 taxonomic orders (Supplementary
Data 1.1-1.4 and Supplementary Notes 1 and 2) with ages ranging
from prenatal to 139 years old (bowhead whale, Balaena mysticetus)®.
These data are a subset from our Mammalian Methylation Consor-
tium, which characterized maximum lifespan’. As we were interested
in developing pan-mammalian clocks, we restricted the analysis to
animals with known ages.

Results
Universal pan-mammalian epigenetic clocks
In separate articles, we described the application of the mammalian
methylation array toindividual mammalian species'® ™. These studies
already demonstrate that one can build dual-species epigenetic age
estimators (for example, human-naked mole rat clocks)™, in contrast
tofirst-and second-generation clocks that measure human age**** and
mortality risk*>?, respectively. However, it is not yet known whether one
can develop amathematical formulato estimate age in allmammalian
species. Here we present three such pan-mammalian age estimators.
The first, basic clock (clock 1), regresses log-transformed chron-
ological age on DNA methylation levels of all available mammals.
Although such a clock can directly estimate the age of any mammal,
its usefulness could be further increased if its output were adjusted
for differencesin the maximum lifespan of each species as well, as this
would allow biologically meaningful comparisons to be made between
species with very different lifespans. To this end, we developed asecond
universal clock that defines individual age relative to the maximum
lifespan of its species; generating relative age estimates between 0O
and 1. Because the accuracy of this universal relative age clock (clock 2)
could be compromised in species for which knowledge of maximum
lifespanisinaccurate, we developed a third universal clock, using age at
sexual maturity (ASM) and gestation time instead of maximum lifespan,
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asthese traits are better established and explain over 69% of maximum
lifespan variation on the log scale (Supplementary Data 2). This third
clockisreferred to as the universal log-linear age clock (clock 3). The
non-linear mathematical function underlying the age transformation
of clock 3 reflects the fact that epigenetic clocks tick faster during
development, anobservation that led to the establishment of the first
pan-tissue clock for humans* (Extended Data Fig. 1a,b,d,e).

Performance of universal epigenetic clocks across species

To evaluate the clocks’ accuracy, we employed leave-one-fraction-out
(LOFO) and leave-one-species-out (LOSO) cross-validation analyses.
Each analysis divides the dataset differently for validation: LOFO into
tenfractions with similar proportions of species and tissue types; LOSO
excludes one species per iteration. The final models of the clocks use
less than1,000 CpGsites each (Supplementary Data 3.1-3.3), with 401
common genes proximal to CpG sitesinboth clock2 and clock 3 (Sup-
plementary Data 3.5). LOFO cross-validation reveals the universal clocks
as highly accurate estimators of chronological age (r = 0.96-0.98) with
amedian absolute error (MAE) of <1 year between chronological age
and DNA methylation (DNAm)-based age estimate (DNAmAge) and a
relative error of <3.3% (Figs. 1a,cand 2, Extended Data Fig. 2a, Supple-
mentary Table 1 and Supplementary Data 4.1-4.3). Despite the mam-
malian array mapping fewer CpG sites to marsupials®, clocks 2 and 3
maintain their accuracy when analysis is confined to marsupials (for
example, r=0.91, median MAE < 0.80 year for clock 2; Fig. 1b). Moreo-
ver, our monotreme study (n = 15) produced encouraging results (for
example, r=0.85for clock 2; Supplementary Data 4.1).

Using LOSO cross-validation, the clocks displayed age correlations
ashighasr=0.941(Supplementary Table1), suggesting their applica-
bility to species not included in the training set. However, for certain
species, suchasbowhead whales, the basic clock’s predicted epigenetic
age poorly aligns with chronological age (Extended Data Fig. 2a).

For the basic clock 1, the mean discrepancy between LOSO
DNAmAge and chronological age (Delta.Age) is negatively correlated
with species maximum lifespan (r=-0.84, P=1.0 x10™°) and ASM
(r=-0.75,P=7.9 x10™"; Extended Data Fig. 2c,d). Here, the strengths
of clocks 2 and 3 come to fore as they adjust for these species charac-
teristics during their construction (Extended Data Fig. 1).

Universal clocks 2 and 3, arguably more biologically meaningful
than clock 1, achieve a correlation of r> 0.95 between DNAm trans-
formed age and observed transformed age, respectively (Fig. 1d,f).
We will focus ontheminthe following text. They are pan-tissue clocks
offering comparable accuracy in LOFO estimates across numerous
tissue types (Fig. 1 and Supplementary Data 4.2). For instance, clock
2yielded high age correlations in humans (LOFO estimate of r = 0.959
across 20 tissue types), mice (r=0.948, 26 tissues) and bottlenose
dolphins (r=0.945, two tissues). Fig. 2 displays circle plots for the age
correlation estimatesin different species sorted by maximum lifespan.

Visual inspection indicates no relationship between age correla-
tion from clocks 2 and 3 and maximum lifespan (dashed line, Fig. 2,
circle). While accurately predicting age for the humpback whale and
other mammals, the clocks sometimes underestimated bowhead whale
reported age (mammalian speciesindex4.11.1inFig.1a,c), possibly due
tooverestimation of older whales’ ages by aspartic acid racemization.

Clocks 2 and 3 provide similarly accurate LOSO age estimates
between evolutionarily distant species (Supplementary Data 5.2),

including dogs (n =742, 93 breeds, r=0.94, MAE < 2.28 years), African
elephants (r=0.96, MAE < 4.0 years) and flying foxes (r= 0.97, MAE < 2.3
years) (Fig. 1j-1). Such accuracy demonstrates these clocks’ broad rele-
vance, tappinginto conserved age-related mechanisms across mammals,
including species notin the training data (Supplementary Data5.1-5.2).

The three universal clocks performed well for 114 species with
fewer than 15 samples each (r = 0.90, MAE = 1.2 years for clocks 1-3;
Extended Data Fig. 3a-c), exhibiting strong correlation for relative
age (r=0.91for clock 2; Extended Data Fig. 3d).

Pan-mammalian universal clocks across tissues

The significantly distinct epigenomic landscape across tissue types®*
prompted an assessment of these clocks’ performance in different tis-
sues. We assessed the tissue-specific accuracy of clock 2 for estimating
relative age (r=0.95, Fig. 1d) across 33 distinct tissue types, observing a
median correlation of 0.91 and a median MAE for relative age of 0.027
(Supplementary Data4.3). High age correlation was consistently observed
inbrain regions: whole brain (r=0.991), cerebellum (r= 0.963), cortex
(r=0.957), hippocampus (r = 0.954) and striatum (r = 0.935; Extended
Data Fig. 5a,d,f,g,i and Supplementary Data 4.3) as well as in organs:
spleen (r=0.982), liver (r=0.963) and kidney (r= 0.963; Extended Data
Fig.5b,c,e). Blood and skinalso showed high estimates of relative age cor-
relations across different species: blood (r=0.952, MAE = 0.022,124 spe-
cies) andskin (r=0.942, MAE = 0.027,92 species; Extended DataFig. 5h k).

Tissue-specific pan-mammalian clocks

The universal pan-mammalian clocks, derived from multiple tissue
types, are essentially pan-tissue clocks. We also constructed analogous
clocks solely based on blood (Universal BloodClock 2 and Universal
BloodClock 3) and skin (Universal SkinClock 2 and Universal SkinClock
3), the tissues most readily accessible across all species. These tissue-
specific clocks tend to demonstrate slightly higher accuracy than the
pan-tissue clocks when analyzing their respective tissues. Both the
blood and skin clocks exhibit robust age correlations (r = 0.983-0.987
for blood and r = 0.951-0.968 for skin; Extended Data Fig. 4¢,g).

Human mortality risk, clinical biomarkers and lifestyle factors
Retrospective studies indicate that human epigenetic clocks can pre-
dict mortality risk and time to death, even when adjusted for chrono-
logical age and other risk factors?”. We tested whether this applies to
pan-mammalian methylation clocks, using data from the Framingham
Heart Study Offspring cohort (FHS, n =2,544) and the Women’s Health
Initiative (WHI, n=2,107). We devised a method to impute mammalian
methylation array data from human Infinium array data (Supplemen-
tary Note 5). Our meta-analysis demonstrates that both clocks 2 and
3 can predict human mortality risk after adjusting for age and other
confounders. The hazard ratio (HR) for 1 year of epigenetic age accel-
eration wassignificantly associated with all-cause mortality (HR =1.03
and P=6.0 x10™ for clock 2and HR=1.03, P=5.3 x 10 for clock 3;
Fig.3a,b), although less pronounced than specialized human clocks
designed to estimate human mortality risk?>>>5,

We evaluated the cross-sectional associations of lifestyle fac-
tors and clinical biomarkers with clocks 2 and 3 in the same cohorts.
Robust correlation analysis (biweight midcorrelation (bicor)®)
revealed associations of both clocks with inflammation (C-reactive
protein, bicor=0.12, P=9.9 x107) and dyslipidemia (triglyceride

Fig.1|Universal clocks for transformed age across mammals. The figure
displays relative age estimates of universal clock 2 (clock 2) and log-linear-
transformed age of universal clock 3 (clock 3). Relative age estimates incorporate
maximum lifespan and assume values between 0 and 1. Log-linear age is
formulated with ASM and gestational time. a-i, Age estimated by LOFO cross-
validation for clock 2 and clock 3. j-1, Age estimated via LOSO cross-validation for
clock 2. The DNAm estimates of age (y axes) of a-c are transformations of relative
age (clock 2) or log-linear age (clock 3) into units of years. b,e, Only marsupials

(nine species). Each panel reports a Pearson correlation (Cor) coefficient.

The gray and black dashed lines correspond to the diagonal line (y=x) and the
regression line, respectively. Median correlation (med.Cor) and median of MAE
(med.MAE) are calculated across species (a—f) or across species-tissue (g-1). All
correlation Pvalues are highly significant (P<1.0 x 1072%). Each sample is labeled
by mammalian species index and indicated by tissue color (Supplementary
Datal.3-1.4). All Pvalues reported are unadjusted and two sided.
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levels, P=3.2 x1077; Supplementary Table 2). Less significant asso-
ciations were for fasting glucose levels (P = 0.0093), body mass index
(P=0.011), smoking status (P = 0.027) or physical exercise (P= 0.0064).
While these are nominally significant, they are far weaker than those
observed with custom clocks for human mortality risk?**,

Heritability analysis in humans

Toinvestigate whether genetic control within aspeciesinfluences the
epigenetic aging rates measured by pan-mammalian clocks, we used
human pedigree data from the FHS. Pedigree-based polygenic models
of epigenetic age, adjusted for age and sex, yielded significant
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1.1.1 Human 1.6.3 N. giant mouse lemur 4.1.18 Eland 5.1.1Dog
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4.3.1 Roe deer

4.3.2 Red deer

4.3.3 Indian muntjac
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2 Harp seal
1 Florida black bear
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1.3.13 Red ruffed lemur

4.13.1 Comme.'s dolphin
4.13.2 Hector's dolphin
4.13.3 Sfinn. pilot whale

4.1.5 Domestic goat
4.1.6 White-bearded gnu
4.1.7 Thomson's gazelle

1.3.14 Red ruffed lemur 4.1.8 Slender H. gazelle 4.13.4 PAC w.s. dolphin 6.1.1 Horse
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narrow-sense heritability estimates for clock 2 (h2 = 0.44,P=3.4 x107®)
and clock 3 (h?=0.41, P=4.0 x107). These heritability estimates for
pan-mammalian clocks are on par with that of Horvath’s human pan-
tissue clock (h2=0.39,P=4.0 x107)*.
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Epigenetic reprogramming reverses epigenetic age
Epigenetic clocks, such as the human pan-tissue clock, suggest that
cellular reprogramming based on the Yamanaka factors (collectively
termed as OSKM: OCT4,SOX2,KLF4, and c-MYC) induces age reversal**°.
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Fig.2| Accuracy of universal clocks are independent of species lifespan. The
circle plot displays Pearson correlation between age and DNAmAge estimated by
universal clocks 2 (clock 2) and 3 (clock 3) for various species. Of the 185 species,
correlation analysis was performed on 69 species (with n >15in a single tissue)
across 12 taxonomic orders. We took log transformation of maximum lifespans of
species and divided them by log (211), which is the maximum lifespan of bowhead
whales. Values of the resulting ratios ranged from 0.12 (cinereus shrew) to 1
(bowhead whales). These ratios are displayed in descending order in the circle
plot marked by the black dashed line, starting with the bowhead whale (1) and
human (0.90) and ending with the cinereus shrew (0.12), in counterclockwise
direction. Inthe background, circumferences with increasing radii represent
increasing correlation levels up to 0.9. These correlations between age and
DNAmAge were estimated by clock 2 (red path line) and clock 3 (purple path

line) for each species. Colors within the circle represent the taxonomic order of
the corresponding species, as listed below the circle. The median of correlation

across speciesis 0.926 for clock 2 and 0.918 for clock 3. Straw-colored fruit

bats exhibit the highest correlation (r = 0.985) based on clock 2, and Wisconsin
miniature pigs have the second highest correlation (r= 0.984) based on clock

3. Amajority of species with their circle lines located outside the background
indicates that their correlation estimates are greater than 0.9. The text at the
bottom lists the 185 species under their corresponding taxonomic order. Each
taxonomic order is marked by the same color matching with the circle plot. The
numbers after the first and second decimal points enumerate the taxonomic
family and species, respectively. AU, Australian; Comme., Commerson’s;

E., eastern; f.t., free-tailed; g.m., golden-mantled; H. (gazelle), Horn gazelle;
Hoff., Hoffman’s; IP, Indo-Pacific; L.s, Linne’s; l.n., long-nosed; m.e., mouse-eared;
mini., miniature; N., northern; o.h., one horned; s.c., small-clawed;

PAC w.s., Pacific white-sided; R.-toothed, Rough-toothed; Soemm.,
Soemmerring’s; S.finn., Short-finned; s.n., short nosed; s.t., short-tailed;

s.w., sac-winged; W. western; W.F., White-fronted; WI mini., Wisconsin miniature.

To examine whether the universal clocks show a similar age-reversal
patternduring reprogramming, we applied clock 2and clock 3to a previ-
ously published reprogramming dataset in human dermal fibroblasts®.
Weimputed the mammalian methylation array data on the basis of the
existing human Infinium array data. Both clocks suggest age reversal
after OSKM transduction (Fig. 3c,d). Notably, universal clock 2 showed
adecrease in epigenetic age in partially reprogrammed cells after 11d
(Fig. 3c), mirroring observations with human epigenetic clocks****,

Transgenic mice for studying the somatotropic axis

Growth hormone, generated by somatotropic cells, stimulates body
tissue growth, including bone. The somatotropic axis (growthhormone
and insulin-like growth factor 1 (IGF-1) levels and their cognate recep-
tors) is central to aging and longevity studies®. Decreased growth hor-
mone-IGF-1signaling extends longevity in various species, including
mice**. Afull-body growth hormone receptor-knockout (KO) (GHRKO)
mouse holds the official record for being the longest-lived representa-
tive of Mus musculus, living 1 week shy of 5 years™®.

We examined whether reduced growth hormone-IGF-1 pathway
activity slows universal pan-mammalian clocks, using three mouse
models: (1) Snell dwarf mice, lacking growth hormone production
and hence living longer®*®, (2) full-body GHRKO mice with increased
lifespan® and (3) liver-specific GHRKO mice, showing lowered serum
IGF-1levels but not lifespan increase.

Clock 2 and 3 analyses revealed that Snell dwarf mice exhibit a
significantly lower epigenetic age across all considered tissues than
wild-type mice (cerebral cortex, Student’s t-test, P=2.0 x 1075; kidney,
P=6.0x10"; liver,P=1.0 x107; tail, P=1.0 x107%; blood, P=2.0 x 107%;
spleen, P=0.03; Fig. 3e,f). Similarly, full-body GHRKO mice showed
lower epigenetic age in several tissues (liver, P=3.0 x 10~5; kidney,
P=2.0x1075; cerebral cortex, P= 0.02; Fig. 3e,f).

Growth hormone receptor signaling stimulates IGF-1liver syn-
thesis, suggesting that dwarf mice’s epigenetic age reversal may be

due to lower circulating IGF-1 levels. This hypothesis, however, is
not supported by our epigenetic age measurements of liver-specific
GHRKO mice, which exhibit a non-significant difference from the
wild-type controls (Fig. 3e). Both clocks 2 and 3 show that the liver-spe-
cific GHRKO mice are not epigenetically younger than wild-type mice
(Fig. 3e). Unlike full-body GHRKO mice, liver-specific GHRKO mice do
not possess alongevity advantage®*™.

Caloricrestrictionin mice

Caloricrestriction (CR), which also slows the somatotrophic axis
(growth hormone-IGF-1), is associated with prolonged lifespan in
several mouse strains*>*', Previous studies using mouse clocks have
shown that CR reduces the rate of epigenetic aging in liver samples®”.
Using existing methylation data from a murine study of CR*’, we find
that clocks 2 and 3 yield a reduced epigenetic age for mouse liver
samples (P=6.0 x10™2for clock 2, P=7.0 x 10" for clock 3; Fig. 3¢,f).
These results for pan-mammalian clocks align with those obtained
with mouse-specific clocks™***,

TET enzyme-KO studies in mice
TET enzymes are instrumentalin active DNA demethylation. Because
hydroxymethylation mediated by TET enzymesis prevalentin brain
tissue, we applied the universal clocks to brain tissue samples from
Tetl-, Tet2- and Tet3-KO mice. Analysis with our universal clocks
revealed that Tet3-KO mice exhibit areduced rate of epigenetic aging
(cerebral cortex, P=3.0 x10° and striatum, P=2.0 x 10™%; Fig. 3e,f).
By contrast, significant epigenetic age-reversal effects in brain tis-
sue were relatively weak for Tetl (cerebral cortex, P= 6.0 x 10 and
striatum, P=2.0 x107*; Fig. 3e) and could not be observed for Tet2-KO
mice (P> 0.6; Fig. 3e).

The differential effect of Tet3KO versus Tet1 or Tet2KO in neurons
echoes the results of an epigenetic reprogramming study in mouse
retinal ganglion cells (Oct4, Sox2 and Kif4 (ref. 45)).

Fig.3| Applications of universal pan-mammalian clocks in human cohorts,
reprogramming experiment and murine anti-aging studies. a,b, Forest
plots representing the fixed effect (FE) model meta-analysis, combining

HRs from Cox regression models for time to death, based on epigenetic age
acceleration measures of clock 2 (AgeAccelClock2) and clock 3 (AgeAccelClock3)
across different ethnic groups within two epidemiological cohorts. Each

row indicates an HR for al-year increase in the age acceleration (AgeAccel)
measure, along with a 95% confidence interval (CI). ¢,d, DNAmAge estimates
of human dermal fibroblasts during OSKM-induced reprogramming. The
yaxes are DNAmAge estimates of clock2and clock3atday 0, 3, ..., 42and

49, respectively, during reprogramming™. e, Evaluations of mouse anti-age
interventions: (1) age-matched Snell dwarf mutation study: 48 normal and 47
dwarfmice with ages of approximately 0.52 (mean +s.d. = 0.52 + 0.01) years,
(2) age-matched whole-body GHRKO experiment 1 (Exp.1) with 36 normal and
35 GHRKO mice (mean +s.d. = 0.65 + 0.06 years), (3) age-matched GHRKO

experiment 2 with GHRKO in livers only with 48 normal and 48 GHRKO genotypes
(mean £s.d. = 0.51+0.03 years old), (4) Tet gene-KO study with all samples at

age 0.5years (Tet1,32 controls and 32 Tet1 KO; Tet2, 33 controls and 32 Tet2KO;
Tet3,31 controls and 32 Tet3KO) and (5) CR study in livers (59 in CR versus 36
control mice with all ages at 1.57 years old). Comparisons in experiments 2 and

3 were based on AgeAccel measures. The color gradient is based on the sign of
t-test for controls versus experimental mice, with a positive sign indicating that
the mice in the control group exhibit higher age acceleration than the mice in

the experimental group. f, Bar plots for selective tissue types and clocks across
Snell dwarf mice (eight normal and eight dwarf mice) GHRKO experiment 1

(12 normal and 11 GHRKO mice), Tet3-KO mice (15 normal and 16 Tet3-KO mice)
and the entire CR experiment, respectively. The orange dotsin cand d and the
blue dotsin e correspond to individual observations. The y axes of the bar plots
depict the mean of one standard error. All Pvalues reported are two sided and are
unadjusted for multiple testing.
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Meta epigenome-wide association study of age across species

Universal clocks, founded on penalized regression models, consist
solely of CpGsites that are most predictive of age. Consequently, most
other age-related CpG sites are not included in the final regression

models.

Toidentifyallage-related CpGsites, we carried out two-stage meta-
analysis across species and tissues in eutherians (98% of the samples).
Our epigenome-wide association study (EWAS) of age indicated that
CpGsites becomingincreasingly methylated with age (positively cor-
related with age) are conserved across tissues and species (Fig. 4a).
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Imposing a stringent unadjusted significance threshold of
a =102 limited our analysis to fewer than 1,000 CpG sites across all
eutherian species and tissues (Fig. 4a and Supplementary Data 6.1).
Of the 832 resulting age-related CpG sites, those most significantly
associate with age were cg12841266 (P=1.4 x10™°") and cgl11084334
(P=2.6 x10"%"), both located in exon 2 of LHFPL4 (hg38). Notably,
¢g12841266 exhibited a correlation >0.8 in 28 species (Supplemen-
tary Data 7; three examples are shown in Fig. 4b-d). Another CpG,
cg09710440, resides in exon 1 of LHFPL3 (P=5.0 x107%), a paralog
of LHFPL4 (Fig. 4a, Extended Data Fig. 6 and Supplementary Data
6.1-6.7). As LHFPL4 and LHFPL3 are in human chromosomes 3 and 7,
respectively, their consistent age-related gain of methylation is not
due to physical proximity.

Beyond LHFPL4 and LHFPL3, other significant gene pairs among
thetop 30 age-related CpGsites include ZIC1 (chromosome 3) and ZIC2
(chromosome 13), PAX2 (chromosome 10) and PAXS (chromosome 9)
and CELF6 (chromosome 15) and CELF4 (chromosome 18; Supple-
mentary Data 6.1). Located on separate chromosomes, their shared
age-related methylation changes cannot be due to physical proximity,
indicatingalikely functional rolein aging. Intriguingly, each gene pair
encodes proteins with activities in development.

We observed that numerous cytosines change during the ini-
tial 6 weeks of murine postnatal development. In particular, LHFPL4
cg12841266 displayed a positive correlation (r> 0.6) with age across
murine tissues, especially in the brain and muscle (Fig. 5a-g). High age
correlations were also evidentin older mice (ranging from 0.2 years to
2.5years; Fig. 5h-0).

We obtained abroad overview of age association across different
temporal domains by repeating our two-stage meta-EWAS for young,
middle and old-age groups (Fig. 6a—c). Importantly, methylation
changesrelated to age in young animals strongly align with those seen
inmiddle-aged or old animals, refuting the idea that these changes are
purely tied to organismal development (Fig. 6a—c). This observationis
further reinforced by visualizing the mean methylation levels (8 values)
ofage-related CpGsitesrelative to their distances from transcriptional
start sites (TSS; Fig. 6d).

EWAS of age in marsupials and monotremes

We extended the age-related EWAS analysis to marsupials and mono-
tremes. The top age-related CpG sites for marsupials were found near
genesinvolvedin development, including GRIK2 (P= 8.8 x 107%; Supple-
mentary Data 6.8), encoding a neurotransmitter-associated glutamate
receptor,and ZIC4 (P=2.7 x10™), encoding a zinc finger protein. The
age-related EWAS in monotremes implicated cg22777952 in FOXB1
(P=8.1x107"; Supplementary Data 6.9), encoding aforkhead box pro-
tein. Moderate positive correlation with eutherian age-related methyla-
tion changes was observed (r = 0.295 in marsupials, Fig. 4e; r=0.227
in monotremes, Fig. 4f), in part due to the lower sample numbersin
these groups. However, the age effect on methylation of cgl1084334

(not cg12841266) in LHFPL4 is preserved in marsupials (P=4.8 x107;
Fig.4e)and monotremes (P=2.4 x 107; Fig. 4f), despite these limitations.

Meta-analysis of age-related CpG sites across specific tissues
To understand age-related CpG sites across species and tissues, we
focused on six tissues with many available species: brain (whole and
cortex), blood, liver, muscle and skin. We performed an EWAS meta-
analysis on 935 whole brains (18 species-brain tissue categories, eight
species), 391 cortices (six species), 4,513 blood samples (56 species),
1,063 livers (ten species), 354 muscle samples (five species) and 2,363
skin samples (65 species; Supplementary Data1.6-1.11).

Consistently across all tissues, CpG sites with positive age cor-
relations outnumbered those with negative correlations (Extended
Data Fig. 6). While many age-related cytosines were either specific to
individual organs (Supplementary Data 6.2-6.7) or shared between
several organs, 51 CpG sites (48 positively and three negatively age
related) were common to all five organs (Fig. 4g and Supplementary
Table 3). Intotal, 35 genes were proximal to the 48 positive CpG sites,
and three genes were proximal to the three negative CpGsites. Interest-
ingly, 20 of these 35 genes encode transcription factors (TFs), includ-
ing 11 homeobox proteins, seven zinc finger TFs and two paired box
proteins, involved in developmental processes including embryonic
development (Supplementary Table 3). The relevance of thisbecomes
evidentbelow, where the chromatin state, function and tissue-specific
accessibility associated with the location of age-related CpG sites are
described.

Analyses of chromatin states of DNA bearing age-related
cytosines

We observed that 57% of the top 1,000 positively age-related CpG sites
were situated in a CpG island (human genome), while only 2% of the
top 1,000 negatively age-related CpG sites resided there (EWAS of age
across all tissues; Supplementary Data 6.1).

Tounderstand the epigenetic context of age-related CpGsites, we
accessed a detailed universal chromatin state annotation of the human
genome. This resource, derived from 1,032 experiments mapping 32
chromatin marks across 100+ human cell and tissue types*® (Fig. 4h,
Extended Data Fig. 7 and Supplementary Data 8.2-8.9), allowed us to
overlay the positions of the top 1,000 age-related CpG sites. We found
that positively age-related CpG sites were significantly enriched in
states associated with polycomb repressive complex 2 (PRC2)-binding
sites (states BivProm1, BivProm2, ReprPC1). These CpG siteslocalized
to PRC2-bindingsites, as defined by embryonic ectoderm development
(EED), enhancer of zeste 2 PRC2 subunit (EZH2) and PRC2 subunit
(SUZ12) binding (the first row of Fig. 4h). This PRC2 enrichment could
be observed for all tissue types collectively (odds ratio (OR) =22.8,
hypergeometric P=1.9 x10™**’) and when analyzed individually:
blood (OR=29.8, P=2.9 x107"), liver (OR =14.3, P=7.3 x107**®), skin
(OR=14.3,P=9.9 x107¥), cortex (OR=6.5, P=3.7 x107%*) and brain

Fig. 4| Meta-analysis of methylation change in function of chronological
age across species and tissues. a-d,g h, Eutherian EWAS of age. a, Meta-
analysis —log,, (Pvalues) for age-related CpG sites (annotated by proximal
genes) on chromosomes (x axis in hg38). Top and bottom, CpG sites that gain
orlose methylation with age, respectively. CpGsitesin red and blue denote
highly significant positive and negative age correlation (P < 1072%), respectively.
The most significant CpG (cg12841266, P=1.41 x10™°) resides inexon 2 on

the LHFPL4 gene in humans and most mammals, followed by cg11084334
(P=2.59 x107%"). These two CpG sites and cg097720 (P=4.97 x107¥) located in
the paralog gene LHFPL3 are marked with purple diamonds. b-d, Scatterplots of
cg12841266 versus chronological age (years) in mini pigs (Sus scrofa minusculus)
(b), Oldfield mice (Peromyscus polionotus) (c) and horses (Equus caballus) (d).
Tissue samples are labeled by the mammalian species index and colored by
tissue type as detailed in Supplementary Data1.1-1.4. ef, Correlation analysis
between Zscores of EWAS of age in eutherians versus marsupials (e) and
eutherians versus monotremes (f). g,h, Annotations of the top 1,000 CpG sites

withincreased or decreased methylation with age that were identified in EWAS
meta-analysis across all species and tissues (results in a) (brain, cortex, blood,
liver, muscle and skin tissues). g, The overlap of age-associated CpG sites across
various organs, based on the top 1,000 CpG sites showing positive or negative
age correlationin EWAS. The Venn diagram includes 51 age-associated CpG sites
shared across all organs, adjacent to 38 genes (35 with positive and three with
negative age correlation) categorized by protein family. The 35 positive genes are
color coded based on their protein family: two in LHFPL, 12 in homeobox, three
in paired box or T-box, three in bHLH, seven in zinc finger and eight in others.

h, Selected universal chromatin state and polycomb group protein enrichment
results. ORs (Pvalues) are presented in each cell. The color gradient is based
on-log,, (hypergeometric Pvalue) times sign of OR > 1. The complete results are
listed in Extended Data Fig. 7. State annotation can be found in Supplementary
Data 8.2. HET denotes heterochromatin. Except for the hypergeometric analysis
inh, all figure Pvalues are unadjusted and two sided.
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(OR=3.2,P=9.7 x107¥).Indeed, the majority of the top 1,000 positively PRC2, a transcriptional repressor complex, is a key contributor to
age-related CpG sites were significantly enriched in PRC2-binding  H3K27 methylation, achromatin modification linked to transcriptional
sites: 80.8% (808 CpG sites) in blood, 67.5% in liver and 67.2% in skin  repression*’. Importantly, PRC2-mediated histone 3 lysine 27 (H3K27)

(Supplementary Data 8.1). methylation s crucial for establishing bivalent promoters, which house
a
1,000 - 1Hepra @
T LHEPLA @ o) 040080
g 70 POU3F3 ® | ocaspos2 rxs @S 2162
o! *— o L L] L]
> ® Evy2 . CNT o Al ° ® NEYROD2
a roxogest 42 4 ocaaoss2 28 v o YNO79_oC b3
= 500 - . H SO av T .
g "5 i
T 250 43¢
)
° 1 2 3 4 5 6 7 8 9 10 1 12 1314 15 16 17 1819 202122X Y
0-
@ 100 -
=}
= == s A U
> te 0 e ‘! e®® ’ °® T ° ° o3 o °
200- © o ©°, o
% RNES20 eprns o o RIMST G ZFHX4 7 NPASS g ox1: Rcel o ERECT
=} e LOC102724612 novar ® snxr® 6
S 300-  "RNF220 — fatRA LM SNX1 @ 1y roea son ®
L]
AR erii
400 -
b S. scrofa minusculus c P. polionotus d E. caballus
Cor=0.94 Cor=0.92 Cor =0.86
5 72 204 9513 9513 9513 30 6.1.1 611 s
472
1.5
9.5.13 0B B13
§1 §) 1.0 4 9.593.13
9513
0.5 4
9.5. 9391813
0 AENB
. . . .
0.10 0.15 0.10 0.15 0.20
cg12841266 cg12841266 cg12841266
e f [¢] Brain
Cor=0.295, P=1.3x1074 Cor=0.227, P=9.12x107%%
10.0 i F ongculy  TsPancC440982 6 - !
7.5 , > i
' 9
5.0 - 44 I n
PR g Ll Blbod
.g : = 2
2 01 g
5 N 9 0
g 259 n!mas.m. g
LHEPL4 =
“5.0 - Pt oo mo e -2
-7.5
-4 )
~10.07 T T T T T T Liver Muscle
-40 20 0 20 40 60 -40 20 O 20 40 60 R
Eutherians Eutherians ‘,"

Positive: LHFPL4, LHFPL3; homeobox: DBX1, EVX2, HOXA13, IRX1, NKX2-2, OTP,
OTX1, PHOX2B, POU3F2, SIX2, TLX3, VSX2; paired box/T-box: PAX2, PAX5, TBX18;
bHLH: NEUROD2, NEUROD1, TWISTT; zinc: EGR3, NR2E1, PRDM13, SALL1, ZIC1, ZIC2,
ZIC5; other: BDNF, CELF6, DLX6-AS1, FOXD3, LOC642366, NRN1, OBI1-AS1, TFAP2.
Negative: LARPT, SON, SNX1.

Increased with age Decreased with age
2
PRC2 (65x10™)
PRC1 4oL 14 14 14 R 15 006 03 02 06 . Of 06 05
(9.5x10%) | (95x107) | (©.5x107) | (95x10 ©2) | (©: (4x107) | (48x107) (1x107) (1.3x10) (7.6x107) (16x107) (43x107) (11x107)
. 9 6 79 101 18 X
BivProm?1 ®7x10™) (61210) (28x10"%) (2210 (57x107) ' (2
BivProm2 A6 | (410 | @7 210"
82 95 6.6 4 i 2 i 29 i 5.2 0.2 1 0.2 1
ReprPC1 (1.6x10%%) (25x10™) (25x107) (1.2x10%) | (1.3x10%) | @7x10™)  @.3x107) | 07x109)  (1.7x10%)
Quies! [ [ 01 ) K 04 | 03 58 | 34 6. K 02 02 01
uies (65%10%) (65x10%) (61x107) (65x107) (026 | (@5x10% (12x107) | (68x107%) (5:1x10) (026) | (34x107%) (3.4x10%) (61x107
ies2 o o o o 06 | 03 = 04 53 28 49 1.6 01 0.3 0.6
Quies (7.4x10™)  (7.4x10Y  7.4x107) @4x107)  (016) | 26x107)  (7.4x10D) | 27x10™ | (11x10) | 7.4x10™" ©1)  [62x10%) (26x10%  (0.16)
HET1 o . o . o . o o5 | 05 0 53 | 34 5 _ 05 | o0 o 05
(015 | (018 | (015 | (015) | (043 | (043 | (015 | (1x107) | (12x107) )| (043 | (015 (0.15) (0.43)
HET7 [} | [} R ) o | o | o 71 1 8 1 | o 1 32
(037) | (037 | (037) | (0.37) (037 | (037 | (0.37) (41 x104) . (0.63) . (0.63) | (0.37) (0.63) (7.5x|072J
TXEx4 o o o5 . o1 o o o 3 . 26 07 | 41 . 67 145 12.9
XEX (17x107)  (1.7x107) (6.9%107) (1.6 x10 7x107)  (7x107  (.7x10%) | (67x10%) | (17x107) | (025) | (21x107%) (37x107%) (1.7x10°%%) (1.6x10"%)
©22 Al | Blood = Skin | Liver Muscle! Brain @ Cortex All ' Blood Skin | Liver Muscle Brain Cortex
PRC2-binding ! ! ! ! ! ! ! !
proportion
¥ Exon I1 Polycomb repressed Quiescent
I HET B PRC1 and PRC2 TF-binding regions B weak promoters

Nature Aging


http://www.nature.com/nataging

Resource

https://doi.org/10.1038/s43587-023-00462-6

a Mouse in dev. (n =105) b Blood in dev. (n =10)
Cor=0.58, P=8.9x10™" Cor=0.62, P=0.056
Blood .
Blood - . .
© Blood © .
© ©
N 014 Blood Live N 0.4 .
< Liver Hgs; Lissl <
© Ve g ]
‘Q LiVGE.  hiver Biver g 4
2 WOl . e D : .
s 010 W g nggn & 5 010
g T N g
I Tall* Brain I e
= i BriA = .
0.06 7 0.06 ¢
1 2 3 4 5 1 2 3 4 5 6
Age (weeks, med.Cor = 0.76) Age (weeks)
e Liver in dev. (n =23) f Muscle in dev. (n =18)
Cor=0.74,P=5.4x107° Cor=0.89,P=7.6x10"
0.14 - t. 0.14 1
© e ©
© D U ©
o . o 1
< 1 . <
8 . . g 0.12 -
2 012 oy 9 ]
< . ~
a . & 0.0 -
[ 1 . [y
I D I
— . . — g
B S — oos L —
1 2 3 4 5 6 1 2 3 4 5 6
Age (weeks) Age (weeks)
1 Blood after dev. (n = 346) J Heart after dev. (n =105)
Cor=0.81,P=9.8x107% Cor=0.82,P=1x10"%
‘ 0.20 4
© ©
© ©
N N q
g 3
Q Q0.6
D D |
o (6]
< <
- = 0.12
& &
I I B
-~ -
0.08 4
. . . . . . . . .
05 10 15 20 25 05 1.0 15 2.0
Age (years) Age (years)
m Skin after dev. (n = 39) n Tail after dev. (n = 45)
Cor=0.87,P=6.4x10"° Cor=0.83,P=1.8x10"
0.35 - L i :
g o cmy . g 0.20 4 :
g (R g
< . 25 < o
& ot & o016 | .
= 0.25 . =
3 s 2 | ; .
< < 1]
a ] . a o121 H .
[ [ H
I o5 I , .
! T T T T T 008 E ‘ T T T T
05 10 15 20 25 0.2 0.6 1.0 1.4

Age (years)

Age (years)

Fig.5|Methylation levels of cg12841266 (LHFPL4) versus chronological age
inmouse tissues. Results are reported for different tissues and age groups.
a-g, Postnatal development (dev.) (from1week to 6 weeks). h-o, Age effects
inadult mice. Mean +s.d.”® of chronological age is 3.5 + 1.7 (1.0-6.0) weeks
inthe developmental age group and 1.12 + 0.72 (0.15-2.78) years in the post-
developmental group. a,h, All tissues combined. Each dot (sample) is colored
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by the tissue type. 0, Pearson correlations between the CpG site and age in
additional mouse tissues and cell types from the Mammalian Methylation
Consortium. Hemato.prog.LSK, hematopoietic progenitor cells with
lineage Sca-1"c-Kit" phenotype; max, maximum; min, minimum; n, sample
size; SVZ, subventricular zone. Pearson correlation coefficients and nominal
(unadjusted) two-sided correlation test Pvalues are shown.

histones with both H3K27 trimethylation (H3K27me3) and histone 3
lysine 4 trimethylation (H3K4me3). As such, itis consistent that positively
age-related CpGsites are also found tobe enriched inbivalent promoter
states (rows3and 4 of Fig. 4h). They show even greater presenceinabiva-
lent state associated with more H3K27me3 than H3K4me3 (BivProm?2)
thanin BivProml, associated with more balanced levels of these histone

modifications*®. The top EWAS hit, LHFPL4 cg12841266, inabivalent state
(BivProm2) and PRC2-binding region (EED-, EZH2-, SUZ12-binding sites),
exemplifies this (Supplementary Data8.1). These mammalianresultsecho
those from human studies*®*, in which tissue-independent age-related
gainof methylationis characterized by cytosines thatare located in PRC2-
binding sites and bivalent chromatin domains.
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Fig. 6| EWAS of age in three different age groups. For each species, the age
groups were defined with respect to the average ASM obtained from the Animal
Aging and Longevity Database (AnAge) (de Magalhaes et al.*®). We defined

the three age groups using intervals defined by multiples of ASM: young age
isdefined as age <1.5 x ASM, middle age is defined as age between 1.5ASM and
3.5ASM, and old age is defined by age >3.5ASM. Each axis reports a Zscore from
the meta-analysis EWAS of age across allmammalian species and tissues. Each dot
corresponds toa CpGsite. Labels are provided for the top ten hypermethylated
or hypomethylated CpG sites according to the product of Zscoresinxandy

axes. CpGsitesthatarelocated in LHFPL4 and LHFPL3 are colored in purple. The
Pearson correlation coefficient and corresponding nominal (unadjusted) two-
sided correlation test Pvalue can be found in the title. a, EWAS of age in young
animals versus EWAS in middle-aged animals. b, EWAS of age in middle-aged
animals versus EWAS in old animals. ¢, EWAS of age in young animals versus EWAS

1. Young

— 2. Middle 3.0ld

ofagein old animals. The high pairwise correlations indicate that conserved
aging effectsin mammals are largely preserved in different age groups. Many of
the top CpGsites for conserved aging effects in young mammals remain the top
CpGsites for conserved aging effects in old mammals. Specifically, we analyzed
the mean methylation levels in eutherians across the three age groups. d, Mean
methylation (y axis) across the top 1,000 CpG sites positively correlated
withage according to the EWAS across all mammalian tissue types (Fig. 4a).
The x axis denotes the distance to the closest TSSinalog,, scale of bp. The
positive TSS indicates the direction from 5’ to 3/, and the negative TSS indicates
from the direction from 3’ to 5’. The horizontal phase is categorized into three
regions: distal upstream - promoter - gene bodies. The mean methylation
levels are bounded by 0.2, reflecting that fact that CpG sites beginning with lower
methylation levels have higher propensity to increase with age.

We found that ORs for the overlap between positively age-related
CpGsites and PRC2-binding sites were markedly higher in proliferative
tissues (blood, skin, liver) than in non-proliferative tissues (skeletal
muscle, brain, cerebral cortex; Fig. 4h). The distinction between prolif-
erative and non-proliferative tissues also manifested when considering
negatively age-related CpG sites (those that lose methylation levels
with age). In highly proliferative tissues (blood, skin), age-related loss
of methylationwas seenin CpGsites located in select heterochromatin
(HET1, HET7), which are marked by histone 3 lysine 9 trimethylation, or
inactive chromatin states (Quiesl, Quies2), as listed in Supplementary
Data8.2 and Vu & Ernst*®. Conversely, in non-proliferative tissues, age-
related methylation loss could be seen in the exon- and high-expres-
sion-associated transcription state TXEx4 (OR=12.9,P=1.6 x10*?in the
cerebral cortex and OR = 6.7, P=3.7 x 10 22 in skeletal muscle). TXEx4
is far less enriched with age-related cytosines that lose methylation
in proliferative tissues such as blood (OR=2.6, P=1.7 x107*) or skin
(OR=0.7,P=0.25).

Overlap with late-replicating domains

Our chromatin state analysis of age-related loss of methylation demon-
strated thatitisimportant to distinguish proliferating tissues (blood,
skin) from non-proliferative tissues (brain, muscle). Consequently,
we examined the correlation between DNA replication and methyla-
tion. Late-replicating genome domains, prone to partial methylation,
show pronounced methylation loss in solo WCGW cytosines (CpG
sites flanked by A or T on either side®’). We overlaid the top 1,000 age-
related CpG sites (positive or negative) on the reported late-replicat-
ing domains, which are enriched with partially methylated domains
(PMDs)*°. As previously reported for human tissues®, we observed
age-related loss of methylationin PMDs and solo WCGW sites in mam-
malian tissues that proliferate, such as blood and skin (Extended Data
Fig.8and Supplementary Data 9). Notably, the top 1,000 negatively age-
related CpGsites overlap significantly with CpGsites that areboth com-
mon PMDs and solo WCGW sites (hgl9): skin (OR=7.9,P=1.6 x10™%°),
blood (OR=5.3,P=1.5x107°) and all tissues (OR=7.3, P=4.4 x 10™%;
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Fig.7|Biological pathways and functional gene sets enriched in age-related
CpGsites. Selected results from (1) genomic region-based GREAT functional
enrichment (top), (2) gene-based EWAS-TWAS enrichment analysis (middle)
and (3) genomic region-based EWAS-GWAS enrichment analysis (bottom). All
enrichment analyses were based on hypergeometric tests with background
based on the mammalian array. The bar plots in the first column report the total
number of genes at each studied gene set adjusted based on the background.
The leftand right parts of the x axis list the top 1,000 CpG sites that increased or
decreased with age from meta-EWAS of age across all blood, skin, liver, muscle,
brain and cerebral cortex tissues, respectively. On the right side, the first column
color band depicts the three types of enrichment analyses. The second column
color band depicts (1) six ontologies in the GREAT analysis, (2) four speciesin our
TWAS collections and (3) seven categories of human complex traits in the GWAS

Muscle

B MSigDB pathway
l MSigDB perturbation

A Brain = Cortex

Brain = Cortex Blood Skin Liver

l GO molecular function

0 Rat

Longevity

. Neurodegenerative disorder
1 Metabolic outcomes and diseases
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asdescribedin the legend. The heatmap color codes —log,, (hypergeometric
Pvalues). Unadjusted hypergeometric Pvalues (number of overlapped genes)
arereported in the heatmap provided (1) false discovery rate < 0.05, P < 0.001
and the number of overlapped genes >3 for GREAT analysis, (2) P< 0.05 for
EWAS-TWAS and (3) P < 0.05 for EWAS-GWAS. Comprehensive results can be
foundin Supplementary Data10,12 and 13. Abbreviations: act., activity; deg.,
degeneration; AgeAccelGrim, epigenetic age acceleration derived from the
mortality clock: GrimAge*’; DNAmGran, DNAm granulocyte (Supplementary
Note 5); GIANT, Genetic Investigation of ANthropometric Traits; GTEX,
Genotype-Tissue Expression; HD, Huntington’s disease; hipp., hippocampal;
LTL, leukocyte telomere length; MSigDB, Molecular Signatures Database;
mus., muscle; OPCs, oligodendrocyte precursor cells; reg., regulation; TACs,
transiently amplifying progenitor cells; WHR, waist-to-hip ratio.

Extended Data Fig. 8). Contrastingly, non-proliferative tissues, such
as the brain, show a different pattern: CpG sites losing methylation
with age are enriched in highly methylated domains (HMDs, OR = 3.3,
P=1.9x107*) over PMDs (OR = 0.2, P=4.9 x107**). CpG sites gaining
methylation with age show weaker overlap withboth PMDs and highly
methylated domains. Similar findings were observed inlate-replicating
mouse genome domains (mm10; Extended Data Fig. 8). In summary,
pan-mammalian CpG sites losing methylation with age are enrichedin
late-replicating regions of highly proliferative tissues.

Functional enrichment analysis of age-related CpG sites
We used the Genomic Regions Enrichment of Annotations Tool
(GREAT) to annotate the potential function of cis regulatory regions

of age-related CpG sites™. We sought to identify biological processes
and pathways potentially associated with the top 1,000 positively
and negatively age-related CpG sites (Fig. 7 and Supplementary Data
10.1-10.17). To avoid array-design bias, we used mammalianarray CpG
sites as abackground set in our hypergeometric enrichment test.
Analysis of CpG sites positively correlated across all tissues
revealed ‘nervous system development’ as a highly significant gene
ontology (GO) term (P=1.3 x 1072%), This term was consistent across
blood (P=1.9 x1072%*), liver (P=2.6 x 10™"), muscle (P=3.4 x 10™%#), skin
(P=1.7 x10™), brain (P= 6.4 x 10 *) and cortex (P=1.0 x 10 7®). Other
significant GO terms included ‘developmental process’, ‘regulation
of RNA metabolic process’, ‘nucleic acid-binding TF activity’, ‘pattern
specification’ and ‘anatomical structure development’ (Fig. 7). The
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GREAT analysis also indicated that a significant proportion of the top
1,000 positively age-related CpG sites are located in PRC2 target sites
(P=8.3x107%2), whichwasalso true forindividual core PRC2 subunits
(SUZ12, EED or EZH2; Fig. 7). It follows that these CpG sites were also
enriched in promoters with the H3K27me3 modificationin embryonic
stem cells for all tissues (P=1.9 x 10%°), blood (P = 2.8 x 107%), liver
(P=3.4x107%%), muscle (P=9.0 x 107), skin (P =7.8 x 107°?), brain
(P=1.4x10"%*) and cortex (P=2.7 x10™; Fig. 7). AsPRC2 plays acritical
rolein development, these results reinforce the epigenetic link between
development and aging. This connectionis supported by observations
that developmentally compromised mice, due to growth hormone
receptor (GHRKO) ablation or anterior pituitary gland removal (Snell
mice), show reduced rates of epigenetic aging in multiple tissues, as
measured by universal epigenetic age clocks (Fig. 3e).

While positively age-related CpG sites (across all tissues) were
enriched in 2,961 GO or Molecular Signatures Database terms at a
false discovery rate of 0.05 (Supplementary Data10.1), negatively age-
related CpG sites were enriched in only three. Negatively age-related
CpGsites in brain and muscle were enriched in genes associated with
circadian rhythm (brain, P=3.3 x 107; cerebral cortex, P=4.0 x107%;
muscle, P=2.3 x107%; Fig. 7) and Alzheimer’s disease-related gene sets
(for example, P=1.8 x10?° in brain and P=2.4 x 1072 in the cerebral
cortexinFig. 7). These CpGsitesalso overlapped with gene setsrelated
to mitochondrial function in brain, cerebral cortex and muscle (for
example, P=3.6 x107; Supplementary Data10.2).

The GREAT analysis showed enrichment of both positively and
negatively age-related CpG sites in mortality or aging gene sets, can-
cer (Fig. 7) and targets of three Yamanaka factors: SOX2, MYC and
OCT4 (Supplementary Data 10.3). Of the 341 genes proximal to posi-
tively age-related CpGsites, 162 wereimplicated in mortality or aging
(P=6.3x1078;Fig.7).Similar enrichments were seenin specific tissues:
blood (P=3.8 x107%), liver (P=2.7 x 10™2), muscle (P= 6.2 x 107), skin
(P=9.1x10"%), combined brain tissues (P=1.2 x10") and the cerebral
cortex (P=5.0 x107).

Asinflammationincreases with aging, we assessed the overlap with
inflammation-related gene sets (Supplementary Data10.4). Positively
age-related CpG sites are enriched in the gene set associated with
inflammationinthe murine pancreas (all tissues, P= 8.4 x 10*'and skin,
P=9.4x107%°). Negatively age-related CpGsites are enriched in Toll-like
signaling (GO:0034121) genes (muscle, P=9.2 x107%).

Both positively and negatively age-related CpGsites are enriched
inimmunologic signature gene sets associated with interleukin (IL; for
example, IL-6,IL-23) and transforming growth factor (TGF)-B1exposure
in type 17 helper T cells (Supplementary Data 10.4) for notably brain
(Pnegative = 6.1x10™) and cerebral cortex (Pyegarive = 9.1 x107°) and, to
alesser extent, skin (Ppositive = 4.0 x 107*) tissues.

Concerns that these highly significant enrichments may be aresult
of potential biases in the mammalian methylation array platform could
be discounted after sensitivity analysis, asreported in Supplementary
Note 3.

TF binding

We used the CellBase*? and ENCODE databases™ to annotate CpG sites
with binding sites for 68 TFs identified through chromatin immuno-
precipitation followed by sequencing (ChIP-seq) in17 cell types. If a
CpGsite overlapped with the binding site of a TF (hgl9) in atleast one
cell type, it was assigned to that TF. Analysis of the most significant
age-related CpG sites across mammals showed that the REST TF was
the most significant TF for the top 1,000 positively age-related CpG
sites across all tissues (OR = 8.4, P=3.1x107*), especially in prolif-
erative tissues such as blood (OR =5.8, P=2.7 x10™), skin (OR = 8.7,
P=6.8x10) and liver (OR=5.4, P=1.5x10"%), REST TF enrichment
was less significant in non-proliferative tissues such asmuscle (OR =1.8,
P=2.2x1073), cerebral cortex (OR=1.6, P=0.01) and brain (OR=1.4,
P=0.09; Extended Data Fig. 9 and Supplementary Data 11).

REST TF ChIP-seq analysis was performed on five cell lines, includ-
ingahuman embryonicstem cell line (Supplementary Data11.1). REST
isknown for repressing neuronal genes in non-neuronal tissues, which
could explain the weak enrichments in brain regions. Notably, CpG
cg12841266 near LHFPL4 is within the REST-binding region.

Substantial binding enrichments were observed for transcription
factor 12 (TCF12) and histone deacetylase 2 (HDAC2). TCF12 is part of
the basic helix-loop-helix (bHLH) E-protein family, associated with
neuronal differentiation, and top positively age-related CpG sites are
proximal to another bHLH gene, NEURODI (Supplementary Table 3 and
Supplementary Data 11). Lower enrichments were noted for CCCTC-
binding factor (CTCF) and Nanog homeobox (NANOG). For the top
1,000 negatively age-related CpG sites, fewer significant TF binding
enrichments emerged, withJUN (c-Jun)inblood (OR=2.8,P=2.6 x10™°)
andbrain (OR=1.5, P=0.024; Extended DataFig.9) being exceptions.

Age-related CpG sites and age-related transcriptomic changes
We studied whether the top 1,000 positively and negatively age-
related CpG sites neighbor genes with age-correlated mRNA levels.
Using GenAge’* and Enrichr’>* databases, we scrutinized age-specific
transcriptome-wide association studies (TWAS) in four mammalian
species. The EWAS-TWAS overlap analysis (Fig. 7, Extended Data
Fig.10a and Supplementary Data 12) indicates significant overlaps
between age-related CpG sites and transcriptomic age changesin sev-
eral species, including Genotype-Tissue Expression (GTEx) humantib-
ial nerve samples, normal monkey hippocampal samples (P=9 x107™)
and variousratand mousetissues. However, the age-related EWAS and
TWAS overlap is generally weak and tissue specific.

Age-related CpG sites and genome-wide association studies of
human traits

We compared proximal genes of the top 1,000 positively and negatively
age-related CpG sites with the top 2.5% of genes implicated in various
human genome-wide association studies (GWAS). Notable enrichments
were seen in genes associated with waist-to-hip ratio for positively
age-related CpG sites in livers (Ppqsitive = 1.0 x 107), and with human

Fig. 8| scATAC-seq analysis in human bone marrow and mouse HSCs.

a-i, Results using human BMNCs. j, Murine HSCs. a, scATAC-seq results for 17
of the 35 genes (listed in Supplementary Table 3) that show a called ATAC peak
inthe region overlapping with our top CpG sites with positive age correlation.
The yaxis lists the gene symbol. The x axis reports the Pearson correlation
between chronological age and the percentage of cells with an scATAC-seq
signal overlapping the respective CpG site (labeled by the adjacent gene). The
genes are ordered by correlation estimate (from the most negative). A negative
correlation estimate indicates that the accessibility of the CpG site decreases
with chronological age. Each dot presents agene. Seven genes with P< 0.05 are
marked with a solid shape. b, scATAC-seq analysis results for LHFPL4. The y axis
depicts chronological age, and the x axis shows the percentage of cells with an
SCATAC-seq signal. ¢, Percentage of cells identified containing scATAC-seq signal
inone of the seven significantly associated genes averaged across all samples.
Cells are splitinto the called identities using the scRNA-seq measurement

including HSCs, the various progenitors and differentiated cells. DC, dendritic
cell; mono, monocyte; MK/E prog, megakaryocyte-erythroid progenitor; G/M
prog, granulocyte-monocyte progenitor; NK, natural killer; prog, progenitor;
RBC, red blood cell. d-f, The percentage of these three cell populations (HSC
(d), progenitor (e) and differentiated cell type (f)) that contain at least one
ATAC-seq signal in any of the seven significant genes, plotted against the age
of eachindividual (y axis). g-i, The percentage of these three cell populations
perindividual (HSC (g), progenitor (h) and differentiated cell type (i)), plotted
against the age of each individual. j, The percentage of cells with called ATAC
peaks overlapping with our mammalian CpG sites in young mouse (10-week)
versus old mouse (20-month) HSCs. The red dots denote 33 of the top 35
positively age-related CpG sites (listed in Supplementary Table 3) that map to the
mouse genome. The red dashed line corresponds to the diagonal line (y=x).

All Pvalues reported are unadjusted and two sided.
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length at birth for positively age-related CpG sites in the cortex
(Ppositive = 1.0 X 1072) and liver (Pyositive = 2.0 x 107; Fig. 7). Significant
enrichments (defined here as nominal P< 5.0 x 10™*) were also seen
with genes linked to mother’s longevity (mother attained age;
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Ppositive = 2.0 x 107*; Fig. 7, Extended Data Fig. 10b and Supplementary
Data13.1-13.7), human longevity for negatively age-related CpG sites
in muscle (Ppegarive = 8.0 X 107°), epigenetic age acceleration on the
mortality clock (GrimAge Ppsitive = 7.0 x 107 in muscle), age-related
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macular degeneration (Ppositive = 2.0 x 10 % in all tissues), Alzheimer’s
disease (Pegarive = 1.0 X107 in brain), leukocyte telomere length
(Pregative = 3.0 x 10" inmuscle and Pyegarive = 2 X 10™ in brain) and age
atmenarche (Pposiive = 4.0 x 10 in all tissues). Overall, our GWAS over-
lap analysis indicates that pan-mammalian age-related CpG sites are
proximal to genes influencing human development (birth length,
menarche), obesity and longevity.

Single-cell ATAC-seq analysis in human bone marrow
Low-methylated regions distant from TSS correlate with open chroma-
tin, TF binding and enhancers”. Hence, our top positively age-related
pan-mammalian CpGsites (initially low in methylation, gaining meth-
ylation with age) could imply a gradual loss of these open chromatin
regions. To validate this, we examined the association between the
top 35 positively age-related CpG sites (Supplementary Table 3) and
chromatin accessibility in single cells from humanbone marrow mono-
nuclear cells (BMNCs). Single-cell assay for transposase-accessible
chromatin with sequencing (scATAC-seq) data from a recent study*®
employed 10x Multiome technology to profile both ATAC and gene
expression within the same cell across ten donors of varying age. Over-
laying the genomic regions of the top 35 CpG sites (Supplementary
Table 3) withthe called ATAC peaks within the BMNC dataset identified
17 genes, including LHFPL4 (Supplementary Data 14.1 and Fig. 8a).

We calculated the percentage of cells per individual with the
respective peak. A strong, statistically significant negative correla-
tion (Fig. 8b) was found between age and the number of cells with
the ATAC peak overlapping cg12841266 in LHFPL4. This shows that,
with age (as methylation increases), open chromatin cell number
decreases. Of17 generegions, 16 correlated negatively with age, with
seven being statistically significant (P < 0.05; Fig. 8a). The hyper-
methylated sites were highly enriched for this age-associated acces-
sibility loss (P < 0.001; Fig. 8b). The significant genes (LHFPL4, TLX3,
ZIC2,PAX2,NR2E1, NEURODI,DLX6-AS1) arerelated to developmental
processes (Supplementary Table 3). ZICS, another Zic family gene,
also showed a nearly significant negative age correlation (r=-0.54,
P=0.07;Supplementary Data14.1). No scATAC-seq signal was detected
in the cg09710440 region of LHFPL3, possibly due to proximity to a
bivalent gene’s TSS (232 bp).

We examined whether the seven significant ATAC peaks identified
a particular cell type subset. Due to the sparsity of sScATAC-seq data, we
determinedthefractionof each cellgroup containingatleast one of these
regions. We found that stem cell-progenitor populations had a higher
proportionofopenchromatinatthesesites thandifferentiated cells (mean
0f 14.9% versus mean of 2.9%; Fig. 8c). This suggests that the observed
age-related reduction of open chromatin states could be due to the loss
(forexample, death or differentiation) of progenitor cells in the tissue.

We studied three cell groups: hematopoietic stem cells (HSCs),
progenitor cells and differentiated cells. Age showed anegative correla-
tionwiththe percentage of HSCs (r=-0.69, P = 0.01) but no significant
correlation with progenitor or differentiated cells (Fig. 8g-i). Next, we
analyzed the correlation between age and the proportion of cells con-
taining an ATAC peakin atleast one of the seven significant CpG regions
(Fig.8d-f). Differentiated cellsdemonstrated asignificant loss of ATAC
signal in these regions with age (r=-0.68, P=0.01; Fig. 8f), whereas
no change was seen in HSCs or progenitor cells (Fig. 8d,e). This sug-
gests that these regions, gaining methylation and losing accessibility
with age, belong to a differentiated cell population. Lastly, analyzing
increasing lists of positively age-related CpG sites, we noted that the
percentage of cells with an ATAC peak at these locations decreasing
with age in human BMNCs (median correlation < -0.2 across the top
500 0r 1,000 positively age-related CpG sites).

SCATAC-seq analysis in murine HSCs
We tested whether our human HSC findings extended to murine HSCs
by analyzing another public scATAC-seq dataset from murine HSCs with

four replicates eachinyoung (10-week) and old (20-month) mice*. This
dataset provided access to our age-related CpG sites in 4,492 young
and 3,300 old HSCs. Of the top 35 positively age-related CpG sites,
33 overlapped with ATAC peaks (Supplementary Data 14.2). We then
calculated the proportion of HSCs in each age group with the respec-
tive peak. The proportion of old HSCs with a peak near Lhfpl4 was not
significantly different from that of young HSCs (OR=0.94, P=0.7),
implying no observable age-related chromatin compactification in
murine HSCs. This was also true for the other 32 CpG sites and their
associated peaks. Contrarily, the proportion of old HSCs with an ATAC
peak was significantly higher than that of young HSCs for five CpG
sites (near Bdnf, Isl1, Twist1, Nr2el, Salll; Fisher exact P value < 0.05;
Supplementary Data14.2), indicating age-related chromatin opening
(Fig. 8j), aligning with Itokawa et al.’s report™.

Discussion

The consistent age-related alterations in DNA methylation profiles
across mammalian species challenges the view that aging is simply
duetothe random accumulation of cellular damage. Our Mammalian
Methylation Consortiuminvestigated this question with an extensive
set of DNA methylation profiles from 348 species’, using 174 eutherian,
nine marsupial and two monotreme species in this study.

We found a set of CpG sites in DNA sequences conserved across
mammals consistently changing with age, predominantly gaining
methylation. These CpG sites are often in PRC2-binding sites and the
bivalent chromatin states BivProm1 and BivProm2, regulating the
expression of genesinvolved in the process of development**%¢! which
isone of the most conserved biological processes that threads through
allmammalianspecies. Examples of age-related CpGsitesinclude those
near LHFPL4 and LHFPL3. The known function of LHFPL4 in synaptic
clustering of y-aminobutyric acid (GABA) receptors does not provide
aclear connectiontoagingacross tissues. Nevertheless, the specificity
oftheir methylation change with ageis clear, considering their distinct
chromosomallocations, as observed with gene pairssuch as LHFPL3-
LHFPL4,ZIC2-ZIC5, PAX2-PAXS and CELF4-CELF6.

The scATAC-seq analysis of BMNCs revealed that age-correlated
CpGsites are located inregions that lose chromatin accessibility with
ageindifferentiated cells but notin progenitor cells. This suggests that
methylation likely instigates such chromatin compaction®, hindering
PRC2accesstoitstarget sites. We observed this phenomenonin human
bone marrow, where (1) top age-related PRC2 targets are open in sub-
stantially more progenitor cells than differentiated cells and (2) the
percentage of progenitor cells with open age-related PRC2 targets did
not diminish with age. Similarly, the percentage of murine HSCs with
open age-related PRC2 targets did not diminish with age. By contrast,
the percentage of differentiated human bone marrow cells with open
PRC2 targets diminished with age, underscoring the need for further
researchinto other differentiated cell types.

Whenit comesto age-related gain of methylation, itisimportant to
distinguish proliferative tissues from non-proliferative tissues such as
thebrainand muscle. The overlap between PRC2-binding sites and posi-
tively age-related changes is far more pronounced in proliferative tis-
sues thaninnon-proliferative tissues (Fig. 4h). The dichotomy between
proliferative and non-proliferative tissues is even more pronounced
when it comes to characterizing age-related loss of methylation.

Inproliferative tissues, negatively age-related CpG sites are often
located in quiescent chromatin states, heterochromatin and PMDs.
Interestingly, PMDs are in late DNA-replication regions. As methyla-
tion of replicated DNA is slow and only completed very late in S and
G2 phases, late-replicated regions of the DNA are particularly disad-
vantaged inthis regard.Indeed, progressive methylation loss in PMDs
is exploited as a mitotic clock, which also correlates very well with
chronological age™. As such, their identification as pan-mammalian
negatively age-related CpG sites is entirely consistent with studies
observed in human cells. Interestingly, this late-replication effect on
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DNA methylation can be prevented by the binding of histone 3 lysine
36 trimethylation (H3K36me3) to these regions®. This appears to
be mediated by H3K36me3 recruitment of DNA methyltransferase
3 (DNMT3) to unmethylated and newly replicated DNA. Conversely,
functional loss of NSD1, the enzyme that generates H3K36me3, leads
to hypomethylation of DNA and accelerated epigenetic aging®>**.
Age-related loss of methylation in non-proliferative tissues (brain
and muscle), on the other hand, is observed at CpG sites located inan
exon-associated transcription state (TxEx4), which is the most highly
enriched state for transcription termination sites and is associated with
the highest gene expression levels across many cell and tissue types*.

Unlike CpG sites that gain methylation with age, CpG sites that
lose methylation are typically not related to developmental genes.
Instead, they are related to genes of circadian rhythm and mitochon-
dria, the functions of which are progressively eroded with age. Finally,
the LARPI gene, which s proximal to the highest-ranked hypomethyl-
ated cytosine in the liver and second across all tissues, encodes an
RNA-binding protein that is involved in several processes, including
post-transcriptional regulation of gene expression and translation
of downstream targets of mammalian target of rapamycin (mTOR)®.
mTOR has very well-documented links with aging and longevity® and
is also linked to epigenetic aging®“®. Overall, we provide collective
evidence that the methylated mammalian age-related CpG sites that
we identified are not merely stochastic marks accrued with age. They
areinstead methylation changes that capture multiple facets of mam-
malian aging.

The deterministic features of these age-related changes on the
mammalian epigenome make acompelling case that aging is not solely
aconsequence of random cellular damage accruedin time. Itisinstead
apseudo-programmed process thatis alsointimately associated with
mammalian development that begins to unfold from conception. This
issupported by and is consistent with the finding that genes proximal
to age-related CpG sites were also identified by GWAS of human devel-
opment features such as length at birth and age at menarche. A large
body of literature including those by Williams in1957 (refs. 69,70) has
suggested a connectionbetween growth and development and aging.
Morerecently, several authors have suggested epigenetics to be the link
between these two processes®*”*°, This notion is further supported
by the recent demonstration of age reversal through the expression of
Yamanaka factors**'"*, which can also be observed for our universal
pan-mammalian clocks (Fig. 3c,d).

According to the pseudo-programmatic theory of aging, the
process of aging is very much a consequence of the process of develop-
ment, and the ticking of the epigenetic clock reflects the continuation
of developmental processes®*°. As predicted by the epigenetic clock
theory of aging, universal epigenetic clocks provide a continuous
readout of age from early development to old age in all mammals,
as this feature underlies the continuous and largely deterministic
process of aging from conception to tissue homeostasis™. Consistent
with this theory, pan-mammalian methylation clocks are slowed by
conditions that delay growth and/or developmentincluding Snell mice
and full-body GHRKO mice. The successful construction of universal
clocksis acompelling mathematical demonstration of the determin-
istic element in the process of aging that transcends species barriers
within the mammalian class. Indeed, the centrality of PRC2, which is
also present in non-mammalian classes, implies that the process of
aging that is uncovered here is likely to be shared by vertebrates in
general. Our human epidemiological studies and mouse interven-
tional studies show that pan-mammalian clocks relate to human and
mouse mortality risk, respectively. Cross-sectional epidemiological
studies in humans reveal that the pan-mammalian clocks correlate
with markers of inflammation (C-reactive protein) and dyslipidemia
(triglyceridelevels).

Our study has certain limitations. The study primarily focuses
on highly conserved DNA sequences, thus limiting our examination

to approximately 36,000 CpG sites of the tens of millions that exist in
most mammalian genomes. Additionally, our array platform exhibits
aslightbias, featuring more probes that align with eutherian genomes
thanwith marsupial genomes®.

Overall, our results demonstrate that select epigenetic aging
effects are universal across allmammalian species and capture multiple
processes and manifestations of age that have thus far been thought
to be unrelated to each other. We expect that the availability of pan-
mammalian epigenetic clocks will open the path to uncovering inter-
ventions that modulate conserved aging processes in mammals.

Methods

Ethics

All local ethical guidelines were followed, and necessary approvals
fromrespective human ethical review boards and animal ethical com-
mittees were duly obtained. Details can be found in Supplementary
Notes1,2and 4.

Statistics and reproducibility

Data collection and analysis were not performed blind to the condi-
tions of the experiments. In the ensuing sections, we delineate the
quality-control measures for our samples and the statistical methods
employed in each analysis, with additional details provided in Sup-
plementary Notes1and 5.

Tissue samples

We used a subset of the data from the Mammalian Methylation Con-
sortium for which age information was available’. The tissue samples
aredescribed in Supplementary Datal.l-1.4,and related citations are
listed inSupplementary Notes1and 2. We used the SeSAMe normaliza-
tion method®.

Quality controls for establishing universal clocks

Our epigenetic clocks were trained and evaluated on samples with
highly confident age assessments (less than 10% error). We focused
on typical aging patterns, hence excluding tissues from preclinical
anti-aging or pro-aging intervention studies.

Species characteristics

Species characteristics such as maximum lifespan (maximum observed
age) and ASM were obtained from an updated version of AnAge®®
(https://genomics.senescence.info/species/index.html). Tofacilitate
reproducibility, we have posted this modified and updated version of
AnAge in Supplementary Data 1.13.

Three universal pan-mammalian clocks

We applied elastic net regression models to establish three universal
mammalian clocks for estimating chronological age across all tissues
(n=11,754 from 185 species) in eutherians (n = 11,439 from 174 species),
marsupials (n =210 from nine species) and monotremes (n =15 from
two species). The three elastic net regression models, implemented
using theglmnet4.1-7 package inR, corresponded to different outcome
measures described in the following:

1. log-transformed chronological age: log(Age + 2), where an offset
of 2 years was added to avoid negative numbers in case of
prenatal samples,

2. —log(-log(RelativeAge)) and

3. log-linear transformed age.

DNAmAge estimates of each clock were computed viathe respec-
tive inverse transformation. Age transformations used for building
universal clocks2and 3incorporated aselection of three species char-
acteristics: gestational time (GestationT), age at sexual maturity
(ASM) and maximum lifespan (MaxLifespan). All of these species
variables surrounding time are measured in units of years.
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loglog transformation of relative age for clock 2. Our measure of
relative age leverages gestation time and maximum lifespan. We define
relative age (RelativeAge) and apply the double logarithmic loglog
transformation:

Age + GestationT
MaxLifespan + GestationT

RelativeAge = (1

loglogAge = — log (— log (RelativeAge) ). )

By definition, RelativeAgeis between O and 1, and loglogAge s posi-
tively correlated with age. The incorporation of gestation time is not
essential. We simply include it to ensure that RelativeAge takes on posi-
tive values. We used the double logarithmic transformation to link
relative age to the covariates (cytosines) for the following reasons.
First, the transformation maps the unitinterval to the realline. Second,
this transformation ascribes more influence on exceptionally high and
low age values (Extended Data Fig.1a-c). Third, this transformationis
widely used in the context of survival analysis. Fourth, this non-linear
transformation worked better than the identity transformation in
terms of age correlation and calibration.

The regression model underlying universal clock 2 predicts
loglogAge. To arrive at the DNAmAge, one needs to apply the inverse
transformation to loglogAge based on the double exponential
transformation:

DNAmAge = exp (— exp (—loglogAge)) 3
3
x (MaxLifespan + GestationT) — GestationT.

All species characteristics (for example, maximum lifespan, ges-
tational time) come from our updated version of AnAge. We were
concerned that the uneven evidence surrounding the maximum age of
different species could bias our analysis. While billions of people and
many mice have been evaluated for estimating the maximum age of
humans (122.5years) or mice (4 years), the same cannot be said for any
other species. Toaddress this concern, we made the following assump-
tion: the true maximum age is 30% higher than that reportedin AnAge
for all species except for humans and mice. Therefore, we multiplied
the reported maximum lifespan of non-human or non-mouse species
by 1.3.Our predictive models turn out to be highly robust with respect
to this assumption.

Transformation based on log-linear age for clock 3. Our measure
oflog-linear age leverages ASM. The transformation has the following
properties: it takes the logarithmic form when the chronological age
isyoung, and it takes the linear form otherwise. It is continuously dif-
ferentiable at the change.

First, we define a ratio of the age relative to ASM, termed
RelativeAdultAge, as the following:

Age + GestationT

RelativeAdultAge = —————————,
€lativVeAQUItALE = ~ oM T GestationT

4)
where the addition of GestationT ensures that the RelativeAdultAge is
always positive. To model afaster rate of change during development,
we used a log-linear transformation on RelativeAdultAge based on a
function that generalizes the original transformation proposed for the
human pan-tissue clock*:

S 3
y=f(x;m)=3 v x ©®
Iog;, E<1
my+1),y>0
f’l(v;m)={ . (6)
me’, y<o0

Inthe function f{x;m), x denotes RelativeAdultAge, m represents a param-
eter and f represents the log-linear transformation. The output, y, is
the results of applying the function fto x and m. This transformation
is designed toreflect ahigher rate of change for younger RelativeAdult-
Ages whenx <m. This transformation ensures continuity and smooth-
ness atthe change pointat x = m.

In the following, we describe the estimation of the parameter m.
To ensure that the maximum value of y is the same across all species,
the parameter mshouldbe proportional to the maximum of x for each
species, thatis, the best value for m would be the oracle value

m* = ¢, (—MEXL'&S"*’"*GE,S”“""T ) (Extended Data Fig.1d).
ASM+GestationT

The proportionality constant ¢, controls the distribution of y. We
chose the value of ¢; so that y follows approximately anormal distribu-
tionwith mean zero. Because we wanted to define clock 3 without using
MaxLifespan, we opted to use the ratio W as a surrogate for the
oraclevalue m*. We achieved this approximation by fitting the following
regression model with all mammalian species available in our AnAge
database,

MaxLifespan + GestationT

GestationT
ASM + GestationT ’

log ASM

@

~292+0.38 x log

The two log variables in equation (7) have moderate correlation
(r=0.5).Subsequently, we defined ri as follows:

N (GestationT )0‘38
m=¢|——e— s

ASM ®

where ¢, = ¢;e2°2. We chose ¢, = 5.0 so that log-linear age termed yin
equation (5) follows approximately a normal distribution with mean
zero (median =9.0 x107*, skewness = -0.02; Extended Data Fig. 1f).
Setting x=RelativeAdultAge in equation (5) resultsin

RelativeAdultAge
m

— 1, RelativeAdultAge > 1

f(RelativeAdultAge; ri1) = i |
log w, RelativeAdultAge < i

]

Universal clock 3 predicts loglinearAge (denoted as y). Toarrive at
an age estimate, we employ both equations (4) and (6):

m x (ASM + GestationT) x (y + 1) — GestationT, y > O
DNAmAge =
mx (ASM + GestationT) x € — GestationT, y < O
(10)

Statistics for performance of model prediction. To validate our model,
we used DNAmAge estimates from LOFO and LOSO analyses, respectively.
Ateachtype of estimate, we computed Pearson correlation coefficients
and MAE between DNAm-based and observed variables across all sam-
ples. Correlation and MAE were also computed at the species level, lim-
ited to the subgroup with n >15samples (withinaspecies). Wereported
the medians for the correlation estimates (median correlation) and the
medians for the MAE estimates (med.MAE) across species. Analogously,
we repeated the same analysis at the species-tissue level, limited to the
subgroup with at least 15 samples (within a species-tissue category).

For Extended Data Fig. 2, we evaluated the difference Delta.Age
(AAge) between the LOSO estimate of DNAmAge and chronological
age at half the maximum lifespan (0.5 x MaxLifespan). As expected,
AAge = LOSO DNAmAge — (0.5 x MaxLifespan) is negatively correlated
with species maximum lifespan.

Epigenetic age acceleration
Toadjust for age, we defined epigenetic age acceleration (AgeAccel) as
the raw residual resulting from regressing DNAmAge (from universal
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clocks2and 3) on chronological age. By definition, the resulting AgeAc-
celmeasureis not correlated with chronological age.

Human epidemiological cohort studies

We applied our universal clocks 2 and 3 to 4,651 individuals from (1) the
FHS Offspring cohort (n =2,544 Caucasians, 54% women)* and (2) the
WHIcohort®*’ (n=2,107,100% women; Supplementary Note 4). Methyla-
tion levels were profiledin blood samples using the Illlumina450k arrays.
The FHS cohort had a mean (s.d.) age of 66.3 (8.9) years at blood draw,
with330deaths duringanaverage follow-up of 7.8 years. The WHI cohort,
which enrolled postmenopausal women 50-79 years in age, consisted
of three ethnic groups: 47% of European ancestry, 32% African Ameri-
cans and 20% of Hispanic ancestry. These groups exhibited similar age
distributions, withamean (s.d.) age of 65.4 (7.1) years, and amean (s.d.)
follow-up time 0f16.9 (4.6) years. During the follow-up, 765womendied.

Mortality analysis for time to death. Our mortality analysis was per-
formed as follows. First, we applied our Array Converter algorithm
(Supplementary Note 5) to yield the imputed mammalian arrays and to
estimate DNAmAge values based on our universal clocks. Second, we
computed AgeAccel for each cohort. Third, we applied Cox regression
analysis for timeto death (asadependent variable) to assess the predic-
tiveability of our universal clocks for all-cause mortality. The analysis was
adjusted for age at blood draw and for sex in the FHS. We stratified the
WHI cohortby ethnicor racial groups and combined a total of four results
across FHS and WHI cohorts by fixed-effect models weighted by inverse
variance. The meta-analysis was performed with the R ‘metafor’ function.

Human epidemiological cohort studies for lifestyle factors. We per-
formed a robust correlation analysis (bicor”) between (1) our AgeAc-
cel measures from clocks 2 and 3 and (2) 59 variables spanning diet,
clinically relevant measurements and lifestyle factors. Comprehensive
details of these variables and our analytical approaches, inclusive of
meta-analysis, are elucidated in Supplementary Note 5.

Polygenic models for heritability analysis. We calculated the narrow-
sense heritability of our clocks by employing polygenic models as
defined in SOLAR®® and its R interface solarius’ as detailed in Sup-
plementary Note 5.

OSKM reprogramming cells in human dermal fibroblasts. We
applied our universal clock 2 and clock 3 to a previously published
dataset (GSE54848)* in which the authors had transfected human
dermal fibroblasts with the Yamanaka factors (OSKM) over a 49-d
period. The successfully transformed cells were collected and profiled
on the human Illumina 450k arrays. Similar to the applications for
the FHS and WHI cohorts, we applied our Array Converter algorithm
(Supplementary Note 5) to yield the imputed mammalian arrays and
to estimate DNAmAge based on our universal clocks. The clocks were
applied to a total of n=27 samples across experiment days 0, 3, 7,11,
15,20, 28, 35,42 and 49, respectively.

Murine anti-aging studies

None of the samples from the murine anti-aging studies were used
in the training set of the universal clocks, that is, these are truly inde-
pendent test data. Clocks 2 and 3 were evaluated in five mouse experi-
ments (independent test data): (1) Snell dwarf mice (n = 95), (2) GHRKO
experiment1(GHRKO, n=71samples), (3) GHRKO experiment2 (n =96
samples), (4) three Tet experiments: Tet1 KO (n = 64), Tet2KO (n = 65)
and Tet3KO (n=63) and (5) CR (n=95). Details can be found in Sup-
plementary Note 6.

Meta-analysis for EWAS of age
In our primary EWAS of age, we focused on samples from eutherians
(n=65species) for which each species hasatleast 15samples fromthe

sametissue type. In secondary analyses, we also studied aging effects
inmarsupials (n = 4 marsupial species that had at least ten same-tissue
type samples) and monotremes (only n = 2 species). Data distribution
was assumed to be normal, but this was not formally tested.

Our meta-analysis for EWAS of age in eutherian species combined
Pearson correlation test statistics across species-tissue strata that
contained at least 15samples each. The minimum sample size require-
ment resulted in 143 species-tissue strata from 65 eutherian species
(Supplementary Data1.5). To counter the dependency patterns result-
ing from multiple tissues from the same species, the meta-analysis
was carried out in two steps. First, we meta-analyzed the EWAS of
different tissues for each species separately. These tissue-specific
summary statistics were combined within the same species to repre-
sent the EWAS results at species level. Second, we meta-analyzed the
resulting 65-species EWAS results across species to arrive at the final
meta-EWAS of age. In each meta-analysis step, we used the unweighted
Stouffer’s method as implemented in R. In more detail, we gathered
68 blood samples from 27 distinct lemur species and 23 skin samples
from 23 distinct lemur species, each species-tissue stratum with at
most three samples. We therefore combined those 68 blood samples
to performblood EWAS in lemurs. Similarly, we combined the 23 skin
samples for skin EWAS inlemurs. As listed in Supplementary Datal.5,
the combined species in lemurs was denoted by Strepsirrhine in the
column ‘Species Latin Name’.

EWAS of age in marsupials was based on a two-step meta-analysis
inwhich we relaxed the threshold of sample size in the species-tissue
category to n >10 (Supplementary Data 1.12). Due to a small sample
size in monotremes (n =15), we combined all monotreme samples
into asingle dataset.

Brain EWAS. We applied the two-step meta-analysis approach to the
brain EWAS results based on more than 900 brain tissues (cerebellum,
cortex, hippocampus, hypothalamus, striatum, subventricular zone
and wholebrain) from eight species including human, vervet monkey,
mice, olivebaboon, brown rat and pig species (Supplementary Datal.6).

EWAS of asingle tissue. For the cerebral cortex brainregion, we simply
combined tissue-specific EWAS results across different species using
the unweighted Stouffer’s method (Supplementary Data1.7). Similarly,
we carried out the one-step meta-analysis EWAS of blood, liver, muscle
and skin (Supplementary Data 1.8-1.11). Details can be found in Sup-
plementary Note 5.

Allthe Manhattan plots were generated based on a modified ver-
sion of the gmirror functioninR.

Stratification by age groups. To assess whether the age-related CpG
sites in young animals relate to those in old animals, we split the data
into three age groups: young-age (age <1.5ASM), middle-age (age
between 1.5ASM and 3.5ASM) and old-age (age = 3.5ASM) groups.
The threshold of sample size in species-tissue was relaxed to n>10.
The age correlations in each age group were meta-analyzed using the
above-mentioned two-step meta-analysis approach.

Polycomb repressive complex

Polycomb repressive complex annotations were defined based on the
binding of at least two transcriptional factor members of polycomb
repressor complex 1 (PRC1 with subgroups RING1, RNF2, BMI1) or
PRC2 (with subgroups EED, SUZ12 and EZH2) in 49 available ChIP-seq
datasets from ENCODE™.

Weidentified 640 and 5,287 CpGssitesinthe array that were located
inregionsbound by PRC1and PRC2, respectively. We performed a one-
sided hypergeometric analysis to study both enrichment (OR >1) and
depletion (OR <1) patterns for our age-related markers based on the
top 1,000 CpG sites increased with age and the top 1,000 CpG sites
decreased with age from the EWAS of age.
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Universal chromatin state analysis

To annotate our age-related CpG sites based on chromatin states, we
assigned a state for all our mammalian CpG sites based on a recently
published universal ChromHMM chromatin state annotation of the
human genome*®. The underlying hidden Markov model was trained
with over 1,000 datasets of 32 chromatin marks in more than 100 cell
and tissue types. This model then produced a single chromatin state
annotation per genomic position that is applicable across cell and
tissue types, as opposed to producing an annotation that is specific
toone cell or tissue type. A total of 100 distinct states were generated
and categorized into 16 major groups according to the parameters
of the model and external genome annotations*® (described in Sup-
plementary Data 8.2).

We performed a one-sided hypergeometric analysis to study both
enrichment (OR >1) and depletion (OR <1) patterns for our age-related
markers based on the top 1,000 CpG sites with a positive correlation
with age and the top 1,000 CpG sites with a negative correlation with
age across different eutherian species.

Analysis of late-replicating domains
The annotation of late-replicating domains (hgl9 and mm10) was
obtained from Zhou et al.*’, as described in Supplementary Note 5.

GREAT enrichment analysis

We applied the GREAT analysis software tool* to the top 1,000 posi-
tively age-related and the top 1,000 negatively age-related CpG sites
fromthe EWAS of age. GREAT implemented foreground-background
hypergeometric tests over genomic regions where we input all CpG
sites of the mammalian array as background and the genomic regions
ofthe1,000 CpGsites as foreground. This approach yielded hypergeo-
metric Pvalues that were not confounded by the number of CpG sites
within agene (Supplementary Note 5).

EWAS-TWAS overlap analysis

Our EWAS-TWAS-based overlap analysis related the gene sets found by
our EWAS of age with the gene sets from our in-house TWAS database.
The TWAS database, along with our analytical approaches, is described
inSupplementary Note 5.

EWAS-GWAS overlap analysis

Our EWAS-GWAS overlap analysis linked the gene sets discovered in
our EWAS of age with those identified in published large-scale GWAS
studies of various phenotypes (Supplementary Note 5).

Transcription factor binding analysis
We used the CellBase database®, incorporating ENCODE> TF binding
sites for our analysis (Supplementary Note 5).

Single-cell ATAC-seq of human bone marrow

Recentadvances have enabled the sequencing of ATAC profiles within
single cells, enabling assessment of the proportion of cells containing
anopen chromatinregion®®. We cross-referenced the top 35 CpG sites
with positive age correlation across mammalian tissues with publicly
available scATAC-seq data (Supplementary Table 3). We downloaded
10x Multiome count data in AnnData format as HSAD from the Gene
Expression Omnibus (accession number GSE194122). The ATAC array
data were managed using the Python package anndata®. hg38 ATAC
peak locations were extracted from the metadata ‘var’ section using
anndata. Peak locations were overlapped with probe locations using
GenomicRanges’* for the top 35 CpGsites. The overlapping peaks were
then used to extract the processed counts for each cell. The propor-
tion of cells containing an ATAC peak for each individual sample was
calculated. A correlation was calculated by comparing this value against
the age of each individual sample. The cell type for each barcode was
extracted from the observable object. We subsequently computed

the proportion of each cell type containing an ATAC peak in one of
the seven significantly correlated regions (LHFPL4, TLX3, ZIC2, PAX2,
NR2E1, NEURODI and DLX6-AS1). Progenitor cells were grouped as
MK/E progenitors, G/M progenitors, lymph progenitors and proeryth-
roblasts, and differentiated cells were grouped as CD14" monocytes,
CD16" monocytes, CD8" T naive, CD8" T, CD4* T naive, CD4" T activated,
naive CD20" B, B1B, transitional B and NK. The percentage of each of
the three populations (HSC, progenitor and differentiated cells) was
calculated, and the proportion of cells containing an ATAC peak in
one of the seven significantly correlated regions was calculated. To
confirmenrichment for the hypermethylated sites showing decrease
in chromatin accessibility with age, we randomly selected 1,000 sets
of 17 ATAC peaks and compared the mean correlation with age of the
selected regions to the 1,000 sampled sets of regions.

Mouse single-cell ATAC-seq in hematopoietic stem cells. We down-
loaded the publicly available data (H5, meta and fragment files of
Illumina HiSeq 1500 array data) from Itokawa et al.*’ (GSE162662).

SsCATAC-seq data were profiled in four biological replicates in
young (10-week) and old (20-month) mice. The ATAC-seq data were
managed and analyzed with R Signac®*. We applied Fisher’s exact test
to ascertain whether locations with differential accessibility between
young and old animals were enriched with the 33 top positively age-
related CpGsites (OR >1indicates a higher proportionin the old group).
Further analytical details, including ATAC-seq data quality controls, are
presented in Supplementary Note 5.

URLs

Thefollowing URLs are available: AnAge (https://genomics.senescence.
info/species/index.html), GREAT (http://great.stanford.edu/public/
html/), late-replicating domains (https://zwdzwd.github.io/pmd),
UCSC Genome Browser (http://genome.ucsc.edu/index.html).

Reporting summary
Furtherinformation onresearch designis availablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The individual-level data from the Mammalian Methylation Consor-
tium can be accessed from several online locations. All data from the
Mammalian Methylation Consortium are posted on Gene Expression
Omnibus (complete dataset, GSE223748). Subsets of the datasets can
also be downloaded from accession numbers GSE174758, GSE184211,
GSE184213, GSE184215, GSE184216, GSE184218, GSE184220, GSE184221,
GSE184224, GSE190660, GSE190661, GSE190662, GSE190663,
GSE190664, GSE174544, GSE190665, GSE174767, GSE184222,
GSE184223,GSE174777, GSE174778, GSE173330, GSE164127, GSE147002,
GSE147003, GSE147004, GSE223943 and GSE223944. Additional details
canbe found in Supplementary Note 2. The mammalian data can also
be downloaded from the Clock Foundation webpage: https://clock-
foundation.org/MammalianMethylationConsortium. The mammalian
methylationarray is available through the non-profit Epigenetic Clock
Development Foundation (https://clockfoundation.org/). The manifest
file of the mammalian array and genome annotations of CpG sites can
be found on Zenodo (https://doi.org/10.5281/zenodo.7574747). All
other datasupportingthe findings of this study are available fromthe
corresponding author upon reasonable request.

Code availability

The chip manifest files, genome annotations of CpG sites and the
software code for universal pan-mammalian clocks can be found on
GitHub® at https://github.com/shorvath/MammalianMethylation-
Consortium/tree/v2.0.0. The individual R code for the universal pan-
mammalian clocks, EWAS analysis and functional enrichment studies
canbe also found in the Supplementary Code.
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Extended Data Fig. 1| Transformed age in universal clocks. The plot displays
transformed age in universal Clock 2 (a-c) and universal Clock 3 (d-f). (a, b)
Loglog transformation of Relative Age (y-axis) versus age in universal Clock 2 and
(d, e) log-linear age (y-axis) versus age in our universal Clock 3. Of the 969
mammalian species with available gestation time, age at sexual maturity and
maximum lifespanin AnAge database, 339 species are available in our collection.
We multiplied the reported maximum lifespan of non-human or non-mouse
species by 1.3. Transformed ages were calculated for all the 969 species with
simulated age ranging from gestation time through the modified maximum
lifespan. The columns (a, d) display all the 969 species with the simulated ages. In
panel d, we proposed the log-linear age with the parameter m formulated with

maximum lifespan as the informationis available for all species

MaxLifespan+GestationT .

(m*=cy* AsM=Gestatont 1N Methods). Of the 339 species, 185 species with age

information of high confidence and known tissue types were used in training
universal clocks. The columns (b, e) empirically display these 185 species with the
age variable (x-axis) based on the observed ages from all the samplesin our
collection (N =11,754). In panel e, we applied the log-linear age formulated
without knowing maximum lifespan to train Clock 3 (formula (5) in Methods).
Eachlinerepresents a species marked by gray for non-profiled and marked by
black or pink for profiled species in our collection, as listed in the legend. Some
species such as lemurs with relatively short gestation time in regressing m*
(formula (7) in Methods) exhibiting high log-linear ages in (e) are marked in pink.
Each panel reports the Pearson correlation coefficient. (c, f) display the
histograms of transformed ages based on all samples from the 185 species with
vertical lines presenting at means.
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Extended Data Fig. 2| Basic universal clock for log-transformed age. a, b,
Chronological age (x-axis) versus DNAmAge estimated using a, leave-one-
fraction-out (LOFO) and b, leave-one-species-out (LOSO) analysis. The gray and
black dashed lines correspond to the diagonal line (y = x) and the regression line,
respectively. Each sample is labeled by the mammalian species index (legend).
The species index corresponds to the taxonomic order, for example 1= primates,
2 =elephants (Proboscidea) etc. (legend). The numbers after the first and second
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panel reports the Pearson correlation (cor) across all samples. Here med.Cor
denotes the median value across species that contain at least 15 samples. c-f,
The y-axis reports the mean difference between the LOSO estimate of DNAm

age and chronological age evaluated at a fixed age defined as half the maximum
lifespan (denoted as Mean Delta.Age). The scatter plots depict mean delta half
lifespan per species (y-axis) versus ¢, maximum lifespan observed in the species,
d, average age at sexual maturity e, gestational time (in units of years), and f, (log-

transformed) average adult body mass in units of grams. All P-values reported are
unadjusted and are based on two-sided tests.

decimal points enumerate the taxonomic family and species, respectively.
Points are colored by tissue type (Supplementary Data1.4). The heading of each
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Extended Data Fig. 3 | Universal clocks applied to species with fewer than (LOFO) methylation estimates versus a-c, chronological age or d, relative age
15samples. The title of each panel lists the type of universal clock: a, Clock for clock 2. The respective inverse transformations were applied to arrive at DNA
1=basic universal clock based onlog(Age +2), b, d, Clock 2 = universal clock for methylation-based estimates of chronological age in years or relative age (y-axis).

relative age, ¢, Clock 3 =universal clock for log-linear age. Leave-one-fraction-out
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Extended Data Fig. 4 | Universal clocks for specific tissues (blood, skin). These
tissue-specific universal clocks were constructed in an analogous fashion to the
pan-tissue clocks described in the main text. The panels show leave-one-fraction-
out (LOFO) estimates (y-axis) of four clocks: universal blood clock 2 (Universal
BloodClock 2) which estimates relative age, universal blood clock 3 (Universal
BloodClock 3) which estimates log-linear transformation of age. Analogously, we
defined Universal SkinClock2 and Universal SkinClock3. Relative age estimation
incorporates maximum lifespan and gestational age and assumes values between
0Oand1.Log-linear age is formulated with age at sexual maturity and gestational

based on transforming relative age (Clock 2) or log-linear age (Clock 3).

b,f,d, h, transformed age (x-axis) versus corresponding DNAm estimates
(y-axis). The title of each panel reports the Pearson correlation coefficient
across all data points and the median correlation (med.Cor) and median of
median absolute error (med.MAE) across all species. Each sample s labeled by
mammalian species index (explained in Fig. 2) and colored by taxonomic order.
Thelegend reports the taxonomic order and the mammalian order index

asaprefix.
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Extended Data Fig. 5| Universal clock for relative age applied to specific
tissues. a-p, DNA methylation-based estimates of relative age (y-axis) versus

actual relative age (x-axis). The specific tissue or cell type is reported in the title
of each panel. Each sample is labeled by mammalian speciesindex and colored
by tissue type (Supplementary Data1.3-1.4). The analysis is restricted to tissues
that have atleast 15 samples available. Leave-one-fraction-out cross-validation
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(LOFO) was used to arrive at unbiased estimates of predictive accuracy measures:
median absolute error (MAE) and age correlation based on relative age. ‘Cor’
denotes the Pearson correlation coefficient based on all available samples. ‘med.
Cor’ denotes the median values across all species for which at least 15 samples
were available. Titleis marked in blue if a tissue type was collected from asingle
species.
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Extended Data Fig. 6 | Meta-analysis of chronological age in mammalian
samples across specific tissue types. Meta-analysis p-value (-log base 10
transformed) versus chromosomal location (x-axis) according to human

genome assembly 38 (hg38) in (a), brain tissues (across multiple brain regions),

(b) cerebral cortex, (c) blood, (d) liver, (e) muscle and (f) skin tissues. The
upper and lower panels of the Manhattan plot depict the CpG sites that gain/
lose methylation with age. In panel a, P values were calculated via two-stage
meta-analysis that combined EWAS results across strata formed by species/
brain-tissue (with n > 15 samples, Methods). CpGs are colored inred and blue if

they exhibit highly significant positive and negative age correlations according
toametaanalysisP <1.0 x107™°,1.0 x107°,1.0 x107°,1.0 x 10°,1.0 x 10 *° and
1.0 x 10° for a-f, respectively. Red dashed horizontal lines denote Bonferroni
correction. Gene names are annotated for the top 20 CpGs with positive and
negative associations, respectively. CpGs are labeled by adjacent genes. Purple
color and diamond shapes mark CpGs of particular interest: cg12841266 and
cgl11084334 in LHFPL4 and cg09710440 in LHFPL3. All P-values presented in this
figure are unadjusted and computed using two-sided tests.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7| Chromatin state analysis of age-related CpGs. The
heatmap color-codes the hypergeometric overlap analysis between age-related
CpGs (columns) and two groupings of CpGs (1) universal chromatin states
analysis' and (2) binding by polycomb repressive complex1and 2 (PRC1, PRC2)
defined based on ChIP-Seq datasets in ENCODE™, see the last two rows. The first
column shows a bar plot that reports the proportion of CpGs that are known to
be bounded by PRC2 that ranges from zero to one (PRC2). Note that chromatin
states that contain a high proportion of PRC2 bound CpGs overlap significantly
withthetop1,000 CpGs thatincreased with age across tissues and mammal
species. For each row (chromatin state or PRC annotation), the table reports
odds ratios (OR) from hypergeometric test results for the top 1,000 CpGs
thatincreased/decreased with age from meta-EWAS of age across all, blood,

skin, liver, muscle, brainand cerebral cortex tissues, respectively. Unadjusted
hypergeometric P values based on one-sided are listed in Supplementary

Data 8.3-8.9. The heatmap color gradient is based on —log10 (unadjusted
hypergeometric P value) multiplied by the sign of OR greater than one. Red colors
denote OR greater than one in contrast with blue colors for OR less than one.
Legend lists states based on their group category and PRC group. The y-axis lists
state or PRC name and number of mammalian array CpGs inside parentheses.
Theleft/right panel lists the results based on the top 1,000 CpGs with positive/
negative age correlation. We displayed 63 universal chromatin states that

show significantenrichment/depletion at P < 0.001in any of the tissues. HET,
heterochromatin; exon, transcription and exons; weak promoters, bivalent
promoters; promoters, promoter flanking.
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Extended Data Fig. 8 | Overlap with late-replicating domains. The heatmap
color-codes the hypergeometric overlap analysis between age-related CpGs
(columns) and CpGs related to late-replicating domains in hgl9 and mm10
assembly*’, respectively. Two groups of late-replicating domains were analyzed
(1) common PMD/HMD structures: highly methylated domains (commonHMD),
partially methylated domains (commonPMD), and neither (Neither), and (2)
solo-WCGW structures: genome-wide (solo-WCGW) and those in the common
PMD regions (solo-WCGW commonPMDs). The y-axis lists categories of late-
replicating domains and number of mammalian array CpGs inside parentheses

for Hgl9 and mm10 genome, respectively. For each row, the table reports

odds ratios (OR) from hypergeometric test results for the top 1,000 CpGs that
increased/decreased with age from meta-EWAS of age across all, blood, skin,
liver, muscle, brain, and cerebral cortex tissues, respectively. The heatmap color
gradientis based on -logl0 (unadjusted hypergeometric P value) multiplied

by the sign of OR greater than one. Red colors denote OR greater than one in
contrast with blue colors for OR less than one. The left/right panel lists the results
based on the top 1,000 CpGs with positive/negative age correlation. Unadjusted
Pvalues are reported and derived from one-sided hypergeometric tests.
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Extended Data Fig. 9 | Enrichment with Transcription factor binding
regions. We studied the overlapping genomic regions between (1) the CpG sites
located in the binding regions of 68 transcription factors (TF) in hgl9 and (2)
the top 1000 CpGs that increased/decreased with age from EWAS of age across
mammalian tissues. TF results (y-axis, rows) versus mammalian EWAS of age

are stratified by tissue type (x-axis, columns). The left/right panels of the x-axis
list the top 1000 CpGs that increased/decreased with age from meta-EWAS of

cortex, respectively. The y-axis lists the names of transcription factors and

age across all tissues, blood only, skin only, liver, muscle, brain and cerebral

number of mammalian array CpGs located in the binding sites. Background in
hypergeometric tests was based on the genes present in our mammalian array.
Thebar plotsin the first column report the total number of genes at each TF
accordingto the background. The heatmap color codes -logl0 (unadjusted
hypergeometric P value). Unadjusted, one-sided hypergeometric P values (odds
ratio) are listed on the heatmap provided P < 0.05.
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Extended Data Fig.10 | EWAS-TWAS and EWAS-GWAS enrichment. Panel
(a) illustrates the overlap between genes identified in transcriptome-wide
association studies (TWAS) across various cell types or species, and the top
1,000 CpGs that have increased/decreased with age in EWAS across mammalian
tissues. TWAS results are stratified by tissue type, including all tissues, blood,
skin, liver, muscle, brain, and cerebral cortex. Overlapping genes with P < 0.05
arereported. Similarly, Panel (b) demonstrates the overlaps between the top
2.5% genes implicated in genome-wide association studies (GWAS) of human
complex traits, and the top 1,000 CpGs that have increased/decreased with
agein EWAS across mammalian tissues. GWAS results are also stratified by
tissue type, with significant overlaps reported where P < 0.05. Both panels

utilize unadjusted, one-sided hypergeometric P values, with a background for
hypergeometric tests derived from genes (panel a) or genomic regions (panel
b) in our mammalian array. The heatmap color encodes -log10 P values. The
right-side annotation indicates (a) the species categories for TWAS collections
and (b) phenotype categories for GWAS collections. Further details for TWAS
and GWAS indices are available in Supplementary Data 12 &13. Abbreviations:
(a) hipp.=hippocampus, MPNST = malignant peripheral nerve sheath tumor,
mus.=muscle, TACs = transiently amplifying progenitor cells. (b) All = All
ancestries, EUR = European ancestry, AFR = African American ancestry,

FTD = frontotemporal dementia, WHR = waist to hip ratio.
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Data collection  Collections of Mammalian samples are described in Supplementary Information Note 1.Mammalian samples are maintained as Excel spread
sheets or Rdata generated in R.

Data analysis
Matlab_2017b: MAGENTA analysis for yielding gene-level p values based on GWAS SNP associations in EWAS-GWAS analysis
Python 3.10.3: package anndata 0.8.0 for managing human single cell ATAC (sc-ATAC) array data
R_4.0.2: Programming language for statistical computing
R_sesame_1.3.0: Normalize lllumina Infinium DNA methylation array data
R_glmnet_4.1-7 Fit penalized generalized linear models
R_WGCNA_1.69: Weighted correlation network analysis for analysis and graphics.
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R_gwasvcf_0.1.1: Manage GWAS summary datasets in VCF format
R_Signac: Perform quality controls (R_Signac/CreateChromatinAssay function) and data management for mouse sc-ATAC analysis
R_GenomicRanges: Overlap locations between peak calling locations from sc-ATAC and probe locations in our Mammalian array.
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The data for all species from the Mammalian Methylation Consortium can be downloaded from Gene Expression Omnibus (GEO) using the accession number
GSE223748. To facilitate comparative analyses across species, the consortium applied a single measurement platform (the mammalian methylation array,
GPL28271) to n=15,216 DNA samples derived from 70 tissue types of 348 different mammalian species (331 eutherian-, 15 marsupial-, and 2 monotreme species).
The 11,754 samples used for training our universal clocks are part of the samples, which are available for age information.

Subset of the data can be accessed from multiple online locations. First, the data are available from https://clockfoundation.org/
MammalianMethylationConsortium. Second the data can be downloaded from GEO using the following accession numbers: GSE174758, GSE184211, GSE184213,
GSE184215, GSE184216, GSE184218, GSE184220, GSE184221, GSE184224, GSE190660, GSE190661, GSE190662, GSE190663, GSE190664, GSE174544, GSE190665,
GSE174767, GSE184222, GSE184223, GSE174777, GSE174778, GSE173330, GSE164127, GSE147002, GSE147003, GSE147004. Additional details can be found in
Supplementary information note 2. The mammalian methylation array is available through the non-profit Epigenetic Clock Development Foundation (https://
clockfoundation.org/).
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Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender The Sex/Gender variable in the Framingham Heart Study (FHS) Cohort,https://www.framinghamheartstudy.org/index.php, is
based on self-report. The FHS data are available in dbGaP (accession number: phs000363.v16.p10 and phs000724.v2.p9).

The Women's Health Initiative (WHI) is a national study that enrolled postmenopausal women aged 50-79 years into the
clinical trials (CT) or observational study (OS) cohorts between 1993 and 1998.

Population characteristics We applied our universal Clocks 2 and 3 on 4,651 individuals from (a) the Framingham Heart Study (FHS) offspring cohort
(n=2,544 Caucasians, 54% females)and (b) Women's Health Initiative cohort (WHI, n=2107, 100% woman, Supplementary
Information, note 4). Methylation levels were profiled in blood samples using Illumina 450k arrays. The FHS cohort had a mean
(SD) age of 66.3 (8.9) years at blood draw, with 330 deaths during an average follow-up of 7.8 years. The WHI cohort, which
enrolled postmenopausal women aged 50-79 years, consisted of three ethnic groups: 47% of European ancestry (Caucasians),
32% African Americans, and 20% of Hispanic ancestry. These groups exhibited similar age distributions, with a mean (SD) age of
65.4(7.1) years, and a mean (SD) follow-up time of 16.9 (4.6) years. During the follow-up, 765 women died.

Recruitment We did not recruit any human beings in this study. Rather, we used existing data. The FHS cohort is a large-scale longitudinal
study initiated in 1948, originally designed to explore the common factors and characteristics contributing to cardiovascular
disease (CVD) (https://www.framinghamheartstudy.org/index.php). This study initially enrolled participants from the town of
Framingham, Massachusetts, who were asymptomatic for overt CVD, heart attack, or stroke at the time of enroliment. In
1971, the FHS Offspring Cohort was established to encompass a second generation of participants, specifically the adult
children and their spouses of the original cohort (n=5124), for similar examinations. Participants from the FHS Offspring
Cohort were included in our study if they had attended the 8th examination cycle and consented to the use of their
molecular data for research purposes. We utilized data from 2,544 participants with available DNA methylation profiles
(measured at exam 8), obtained from the group providing Health/Medical/Biomedical consent (IRB, MDS). The FHS data can
be accessed through the db GaP (accession numbers: phs000363.v16.p10 and phs000724.v2.p9). The Women’s Health
Initiative, a national landmark study, recruited postmenopausal women aged between 50-79 years into the clinical trials (CT)
or observational study (OS) cohorts between 1993 and 199866,67. We incorporated data from 2,017 WHI participants from
“Broad Agency Award 23” (WHI BA23) which had available phenotype and DNA methylation array data. WHI BA23 is
dedicated to the identification of miRNA and genomic biomarkers of coronary heart disease (CHD), with an aim to integrate
these biomarkers into diagnostic and prognostic predictors of CHD and associated phenotypes. This study encompasses
three WHI sub-cohorts, namely GARNET, WHIMS, and SHARe.

Ethics oversight The Framingham Heart Study is funded by National Institutes of Health contract NO1-HC-25195 and HHSN2682015000011.
The laboratory work for this investigation was funded by the Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health. The analytical component of this project was funded by the Division of Intramural
Research, National Heart, Lung, and Blood Institute, and the Center for Information Technology, National Institutes of Health,
Bethesda, MD.
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The Women's Health Initiative program is funded by the National Heart, Lung, and Blood Institute, National Institutes of
Health, U.S. Department of Health and Human Services through contracts HHSN268201600018C, HHSN268201600001C,
HHSN268201600002C, HHSN268201600003C, and HHSN268201600004C. The authors thank the WHI investigators and staff
for their dedication, and the study participants for making the program possible. A full listing of WHI investigators can be
found at: http://www.whi.org/researchers/Documents%20%20Write%20a%20Paper/WHI%20Investigator%20Long%
20List.pdf. The views expressed in this manuscript are those of the authors and do not necessarily represent the views of
funding bodies such as the National Heart, Lung, and Blood Institute; the National Institutes of Health; or the U.S.
Department of Health and Human Services.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Ecological, evolutionary & environmental sciences study design
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Study description

Research sample

Observational data based on existing samples stored in freezers. We generated 11,754 methylation arrays from over 57 tissue-types
derived from 185 mammalian species. We aimed to profile animals from the entire age range: from very young to very old. Roughly
uniform distribution. We only analyzed tissues from animals whose ages were known with 90% confidence.

|. We employed a custom methylation array (HorvathMammalMethylChip40) that profiles methylation levels of 36k CpGs with
flanking DNA sequences that are highly-conserved across the mammalian class.

II. We obtained such profiles from 11,754 samples from 59 tissue types, derived from 185 mammalian species, representing 19
taxonomic orders and ranging in age from prenatal to 139 years old (bowhead whale).

IIl. The tissue samples are described in the Supplement and related citations as listed in Supplementary Information, Note 1.

IV. To enhance the reproducibility of our findings we include our updated version of the animal age (anAge) database, which is
reported in the supplementary data.

V. Below are the list of ipapers that describe specific species:

1. Horvath, S. et al. Pan-primate DNA methylation clocks. bioRxiv, 2020.11.29.402891 (2021).

2. Horvath, S. et al. Epigenetic clock and methylation studies in the rhesus macaque. GeroScience (2021).

3. Jasinska, A.J. et al. Epigenetic clock and methylation studies in vervet monkeys. GeroScience (2021).

4. Horvath, S. et al. DNA methylation age analysis of rapamycin in common marmosets. GeroScience (2021).

5. Schlabritz-Loutsevitch, N.E. et al. Metabolic adjustments to moderate maternal nutrient restriction. British journal of nutrition 98,
276-284 (2007).

6. Kavitha, J.V. et al. Down-regulation of placental mTOR, insulin/IGF-I signaling, and nutrient transporters in response to maternal
nutrient restriction in the baboon. FASEB journal : official publication of the Federation of American Societies for Experimental
Biology 28, 1294-1305 (2014).

7. Schlabritz-Loutsevitch, N.E. et al. Development of a system for individual feeding of baboons maintained in an outdoor group social
environment. Journal of Medical Primatology 33, 117-126 (2004).

8. Zehr, S.M. et al. Life history profiles for 27 strepsirrhine primate taxa generated using captive data from the Duke Lemur Center.
Scientific Data 1, 140019 (2014).

9. Morgello, S. et al. The National NeuroAIDS Tissue Consortium: a new paradigm in brain banking with an emphasis on infectious
disease. Neuropathol Appl Neurobiol 27, 326-35. (2001).

10. Horvath, S. et al. HIV, pathology and epigenetic age acceleration in different human tissues. Geroscience (2022).

11. Horvath, S. et al. Perinatally acquired HIV infection accelerates epigenetic aging in South African adolescents. AIDS (London,
England) 32, 1465-1474 (2018).

12. Horvath, S. & Ritz, B.R. Increased epigenetic age and granulocyte counts in the blood of Parkinson's disease patients. Aging
(Albany NY) 7, 1130-42 (2015).

13. Kabacik, S., Horvath, S., Cohen, H. & Raj, K. Epigenetic ageing is distinct from senescence-mediated ageing and is not prevented
by telomerase expression. Aging (Albany NY) 10, 2800-2815 (2018).

14. Ross, C.N. et al. The development of a specific pathogen free (SPF) barrier colony of marmosets (Callithrix jacchus) for aging
research. Aging (Albany NY) 9, 2544 (2017).

15. Sailer, L.L. et al. Pair bonding slows epigenetic aging and alters methylation in brains of prairie voles. bioRxiv, 2020.09.25.313775
(2020).

16. Ophir, A.G. Navigating Monogamy: Nonapeptide Sensitivity in a Memory Neural Circuit May Shape Social Behavior and Mating
Decisions. Frontiers in Neuroscience 11(2017).

17. Horvath, S. et al. Methylation studies in Peromyscus: aging, altitude adaptation, and monogamy. GeroScience 44, 447-461 (2022).
18. Horvath, S. et al. DNA methylation aging and transcriptomic studies in horses. Nat Commun 13, 40 (2022).

19. Burns, E.N. et al. Generation of an equine biobank to be used for Functional Annotation of Animal Genomes project. Animal
genetics 49, 564-570 (2018).

20. Horvath, S. et al. DNA methylation clocks tick in naked mole rats but queens age more slowly than nonbreeders. Nature Aging 2,
46-59 (2022).

21.Ke, Z., Vaidya, A., Ascher, J., Seluanov, A. & Gorbunova, V. Novel husbandry techniques support survival of naked mole rat
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Sampling strategy

Data collection

(Heterocephalus glaber) pups. J Am Assoc Lab Anim Sci 53, 89-91 (2014).
22.Tan, L. et al. Naked Mole Rat Cells Have a Stable Epigenome that Resists iPSC Reprogramming. Stem cell reports 9, 1721-1734

(2017).

23. Sugrue, V.J. et al. Castration delays epigenetic aging and feminizes DNA methylation at androgen-regulated loci. elLife 10, e64932
(2021).

24. Schachtschneider, K.M. et al. Epigenetic clock and DNA methylation analysis of porcine models of aging and obesity. GeroScience
(2021).

25. Robeck, T.R. et al. Multi-Tissue Methylation Clocks for Age and Sex Estimation in the Common Bottlenose Dolphin. Frontiers in
Marine Science 8(2021).

26. Robeck, T.R. et al. Multi-species and multi-tissue methylation clocks for age estimation in toothed whales and dolphins. Commun
Biol 4, 642 (2021).

27. Bors, E.K. et al. An epigenetic clock to estimate the age of living beluga whales. Evolutionary Applications (2020).

28. Raj, K. et al. Epigenetic clock and methylation studies in cats. GeroScience (2021).

29. Prado, N.A. et al. Epigenetic clock and methylation studies in elephants. Aging Cell 20, e13414 (2021).

30. Pinho, G.M. et al. Hibernation slows epigenetic ageing in yellow-bellied marmots. Nature Ecology & Evolution 6, 418-426 (2022).
31. Lemaitre, J.-F. et al. DNA methylation as a tool to explore ageing in wild roe deer populations. Molecular Ecology Resources n/
a(2021).

32. Larison, B. et al. Epigenetic models developed for plains zebras predict age in domestic horses and endangered equids.
Communications Biology 4, 1412 (2021).

33. Harley, E.H., Knight, M.H., Lardner, C., Wooding, B. & Gregor, M. The Quagga project: progress over 20 years of selective
breeding. African Journal of Wildlife Research 39, 155-163 (2009).

34. Horvath, S. et al. Reversing age: dual species measurement of epigenetic age with a single clock. bioRxiv, 2020.05.07.082917
(2020).

35. Horvath, S. et al. Epigenetic clock and methylation studies in dogs. PNAS In Press(2022).

36. Plassais, J. et al. Whole genome sequencing of canids reveals genomic regions under selection and variants influencing
morphology. Nature Communications 10, 1489 (2019).

37. Plassais, J. et al. Analysis of large versus small dogs reveals three genes on the canine X chromosome associated with body
weight, muscling and back fat thickness. PLOS Genetics 13, e1006661 (2017).

38. TheAmericanKennelClub. The Complete Dog Book: 20th Edition, (Howell Book House, New York, NY, 2006).

39. Wilcox, B. & Walkowicz, C. The Atlas of Dog Breeds of the World, (T.F.H. Publications, 1995).

40. Wilkinson, G.S. et al. DNA methylation predicts age and provides insight into exceptional longevity of bats. Nature
Communications 12, 1615 (2021).

41. Kordowitzki, P. et al. Epigenetic clock and methylation study of oocytes from a bovine model of reproductive aging. Aging Cell 20,
e13349 (2021).

42. Mozhui, K. et al. Genetic loci and metabolic states associated with murine epigenetic aging. elife 11, 75244 (2022).

43, Lu, A.T. et al. DNA methylation study of Huntington’s disease and motor progression in patients and in animal models. Nature
Communications 11, 4529 (2020).

44, Coschigano, K. et al. Deletion, but not antagonism, of the mouse growth hormone receptor results in severely decreased body
weights, insulin, and insulin-like growth factor | levels and increased life span. Endocrinology 144, 3799-3810 (2003).

45, Acosta-Rodriguez, V.A., Rijo-Ferreira, F., Green, C.B. & Takahashi, J.S. Importance of circadian timing for aging and longevity.
Nature Communications 12, 2862 (2021).

46. Little, T.J. et al. Methylation-Based Age Estimation in a Wild Mouse. bioRxiv, 2020.07.16.203687 (2020).

47. Cossette, M.-L. et al. Differential methylation, epigenetic clocks, and island-mainland divergence in an insectivorous small
mammal. bioRxiv, 2022.04.14.488253 (2022).

48. Horvath, S. et al. Epigenetic clock and methylation studies in marsupials: opossums, Tasmanian devils, kangaroos, and wallabies.
Geroscience In Press(2022).

49. Hogg, C.J., Lee, A.V. & Hibbard, C.J. Managing a metapopulation: intensive to wild and all the places in between. in Saving the
Tasmanian Devil: recovery through science based management 169-182 (CSIRO Publishing Melbourne, 2019).

50. Hogg, C. & Hockley, J. DPIPWE/ZAA husbandry guidelines for Tasmanian devil, Sarcophilus harrisii. Australia: Zoo and Aquarium
Association (2013).

51. Sambrook, J. & Russell, D.W. Purification of nucleic acids by extraction with phenol: chloroform. Cold Spring Harbor Protocols
2006, pdb. prot4455 (2006).

52. Villar, D. et al. Enhancer evolution across 20 mammalian species. Cell 160, 554-66 (2015).

53. Berthelot, C., Villar, D., Horvath, J.E., Odom, D.T. & Flicek, P. Complexity and conservation of regulatory landscapes underlie
evolutionary resilience of mammalian gene expression. Nat Ecol Evol 2, 152-163 (2018).

54. Roller, M. et al. LINE retrotransposons characterize mammalian tissue-specific and evolutionarily dynamic regulatory regions.
Genome Biol 22, 62 (2021).

55. Yan, L. et al. OSAT: a tool for sample-to-batch allocations in genomics experiments. BMC Genomics 13, 689 (2012).

56. Seluanov, A. et al. Hypersensitivity to contact inhibition provides a clue to cancer resistance of naked mole-rat. Proceedings of the
National Academy of Sciences 106, 19352-19357 (2009).

57. Seluanov, A. et al. Telomerase activity coevolves with body mass not lifespan. Aging Cell 6, 45-52 (2007).

We sampled all mammalian species for which existing tissues were available. These fresh frozen tissue samples were contributed by a
large network of investigators from our Mammalian Methylation Consortium.

To guide the quality control (QC) of the study samples, we generated two variables ; the first being a variable indicating the
confidence (0 to 100%) in the chronological age estimate of the sample. For example, a low confidence was assigned to samples from
wild animals whose ages were estimated based on body length measurements. The epigenetic clocks were trained and evaluated in
tissue samples whose confidence exceeded 90% (>=90%). The second quality control variable was an indicator variable (yes/no) that
flagged technical outliers or malignant (cancer) tissue. Since we were interested in "normal" aging patterns we excluded tissues from
preclinical studies surrounding anti-aging or pro-aging interventions.

DNA for methylation profiling was extracted from the tissue samples collected from different species as described in Supplementary
Information, Note 1. After bisulfite conversion and labeling of the DNA, methylation profiles were obtained by hybridizing labeled
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DNA to a custom lllumina methylation array (HorvathMammalMethylChip40) and scanning with an lllumina iScan at the UCLA
Neuroscience Genomics Core.

Timing and spatial scale  The tissue samples were collected over the last 30 years. The data come from many labs all over the world: US, Canada, Europe,
Australia, New Zealand, South America.

Data exclusions We excluded about 1900 samples that had insufficient DNA to provide reliable methylation values, low confidence in the
chronological age estimate or unknown age. We discovered that samples with concentrations below 6 ng/ul could not be accurately
scored at all sites on the array.

Reproducibility 1. We used calibration data (synthetic DNA) to evaluate the accuracy of the methylation measurements (A mammalian methylation
array for profiling methylation levels at conserved sequences by A. Arneson 2021 Nat Comm)
2. We performed EWAS meta-analysis of age using Stouffer's method estimates from Metal algorithm. In addition, we verified the
Stouffer's statistics in our in-house R code.
3. The universal clocks were established via elastic net regression models. To assess the accuracies of our clocks, we used 3
approaches: leave-one-fraction-out (LOFO), leave one-species-out (LOSO) cross validation, and data splitting.
In LOFO, we randomly split the entire dataset into 10 fractions each of which had the same distribution in species and tissue types.
Each penalized regression model was trained in 9 fractions but evaluated in the 10th left out fraction. After circling through the 10
fractions, we arrived at LOFO predictions which were subsequently related to the actual values.
The LOSO cross validation approach trained each model on all but one species. The left out species was used a test set. The LOSO
approach was used to assess how well the penalized regression models generalize to species that were not part of the training data.
To ensure unbiased estimates of accuracy, all aspects of the model fitting were only conducted in the training data in both LOFO and
LOSO analysis.
4. The reported EWAS p values are significant even after using the most stringent multiple comparison correction
(Bonferroni)=0.05/37K based on 37K CpGs on the mammalian array.
5. In GREAT enrichment analysis, we performed two different sensitivity analyses that were inspired by our GREAT enrichment
analysis of the top 1 thousand age related CpGs (EWAS of age). The results are listed in Supplementary Info, Note 2. Our first
sensitivity analysis involved a random set of 1000 CpG mammalian CpGs. Second, we evaluated the enrichment of the top 1087 most
highly conserved CpGs across 158 mammalian genomes. This sensitivity analysis addresses the concern that highly conserved CpGs
could have an increased chance of correlating strongly with chronological age or, conversely, non-conserved (noise) CpGs are
expected to have no signal for age and will therefore not be selected in an EWAS of age.
6. In single cell ATAC-seq analysis, to confirm enrichment for the hyper methylated sites showing decrease of chromatin accessibility
with age, we randomly selected 1000 sets of 17 ATAC peaks and compared the mean correlation with age of the selected regions to
the 1000 sampled sets of regions.

Randomization Not applicable since this is an observational study.

Blinding Blinding was not relevant to our study, because this is an observational study and all available data were used

Did the study involve field work? D Yes No

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
[] Antibodies XI[[] chiP-seq
|:] Eukaryotic cell lines & |:] Flow cytometry
|:] Palaeontology and archaeology & |:] MRI-based neuroimaging

ZI Animals and other organisms
D Clinical data

D Dual use research of concern

NNOXNXX

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals Details in Supplementary Data S1.2. This study leveraged existing tissue samples or data that had been collected as part of other
studies. We profiled tissues from lab animals or animals kept in captivity for research. This includes mouse, rat, opossum, naked
mole rat, deer mouse colonies, rhesus macaque, marmosets, vervet monkey. Companion pets: dogs, cats. Agricultural animals:
horses, pigs, sheep.
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Wild animals Details in Supplementary Data S1.2. Some samples from zoo animals (e.g. elephants). Samples from zoo-based animals were
opportunistically collected and banked during routine health exams. This study also includes samples from wild animals,
which were collected in the field: bats, deer.

Reporting on sex
As the contributors are engaged in long-term field studies, care was taken to minimize disturbance during all the sample
collections for different species. The details are described in species-specific papers.

Field-collected samples | As the contributors are engaged in long-term field studies, care was taken to minimize disturbance during all the sample collections
for different species. The details are described in species-specific papers.

Ethics oversight Institutional animal care and use protocols, or equivalent information from non-US contributors, is provided in Supplementary
Information describing the data and also in the underlying species-specific papers published by Mammalian Methylation Consortium.
Non university organizations are certified either by the Associated Zoos and Aquariums (Lubee Bat Conservancy) or by the Global
Federation of Animal Sanctuaries (Bat World Sanctuary) or Elephant Taxon Advisory Group and Species Survival Plan. Details in
appendix.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Ethics Oversight for Mammalian Methylation Consortium Studies

M1. Primates '’
Ethics

This research complied with all relevant ethical regulations overseen by seven ethics
review boards. The human skin samples were acquired with informed consent prior to
collection of human skin samples with approved by the Oxford Research Ethics
Committee in the UK; reference 10/H0605/1. Participants were not compensated. The
secondary use of the other de-identified/coded human tissue samples (blood,
postmortem tissues) is not interpreted as human subjects research under U.S.
Department of Health & Human Services 45 CFR 46. Therefore, the need to obtain
written, informed consent from human study participants was waived (secondary use of
de-identified tissues). Human samples were covered by University of California Los
Angeles IRB#18-000315. All procedures related to non-human primates were approved
by different committees: baboons (UTHSCSA Animal Care and Use Committee),
strepsirrhini (Duke Institutional Animal Care and Use Committee and the DLC Research
Committee), rhesus macaques (Animal Care and Use Committee of the NIA Intramural
Program) 2, vervet monkey (UCLA and VA Institutional Animal Care and Use

Committees) 3, marmosets (IACUC of UTHSA) 4.

M2. Prairie voles °
Ethics

All experimental procedures were conducted and approved by the Institutional Animal
Care and Use Committee (IACUC) of Cornell University (2013-0102) and were in

accordance with the guidelines set forth by the National Institutes of Health.



M3. Horses ©
Ethics

This collection protocol was approved by the UC Davis Institutional Animal Care and
Use Committee (Protocol#19037). All collection protocols were approved by the UC
Davis Institutional Animal Care and Use Committee (Protocols #20751 and 21455,
respectively).

M4. Naked mole-rat ’
The NMR tissue samples were provided by two different labs: (i) Vera Gorbunova and

Andrei Seluanov from the University of Rochester and (ii) Chris Faulkes from the Queen
Mary, University of London.

Ethics for (i)

All animal experiments were approved and performed in accordance with guidelines set
up by the University of Rochester Committee on Animal Resources with protocol

number 2009-054 (naked mole-rat).

Ethics for (ii)

Naked mole-rats were maintained in the Biological Services Unit at Queen Mary
University of London in accordance with UK Government Animal Testing and Research

Guidance.

M5. Sheep 8
Sheep DNA samples for this study were derived from two distinct tissues from two

strains: ear tissue from New Zealand Merino, and blood from South Australian Merino.

Ethics for ear samples

Ear tissue was obtained from females and both intact and castrated male Merino sheep
during routine on-farm ear tagging procedures in Central Otago, New Zealand. As a

small piece of tissue is removed during the ear tagging process that is usually discarded



by the farmer, we were able to source tissue and record the year of birth without altering
animal experience, in accordance with the New Zealand Animal Welfare Act (1999) and

the National Animal Ethics Advisory Committee (NAEAC) Occasional Paper No 2 [26].

Ethics for blood samples

All protocols involving OVT73 sheep were approved by the Primary Industries and
Regions South Australia (PIRSA, Approval number 19/02) Animal Ethics Committee

with oversight from the University of Auckland Animal Ethics Committee.

Mé. Pig °
Ethics

All animal procedures were approved by the University of lllinois and University of
Wisconsin Institutional Animal Care and Use Committee, and all animals received
humane care according to the criteria outlined in the Guide for the Care and Use of

Laboratory Animals.

M7. Odontocete species 1012
Ethics

The study was authorized by the management of each institution and was reviewed by
their respective zoo research and animal use committees.

M8. Beluga whales 12
Ethics

Skin tissue samples were collected from carcasses of beluga whales that were beach-
cast, stranded dead, or taken during subsistence hunting from 1992 to 2015 in Cook
Inlet, Alaska, USA (NMFS Research Permit 932-1905-00/MA-009526 through the

Marine Mammal Health and Stranding Response Program).



M9. Killer whales and bowhead whales
Ethics

For bowhead (Balaena mysticetus) subsistence hunts, indigenous hunters had the
authorization to conduct hunts and collected samples on behalf of Fisheries and
Oceans Canada. Bowhead whale biopsy samples were collected in 2019 under
Fisheries and Oceans Canada (DFO) license to Fish for Scientific Purposes (LFSP) S-
19/20-1007-NU and Animal Care approval (AUP) FWI-ACC-2019-14. Skin samples
from eastern North Pacific killer whales (Orcinus orca) were collected as previously
described (Ford et al. 2018b) under NMFS General Authorization No. 781-1725, and
scientific research permits 781-1824-01, 16163, 532- 1822-00, 532— 1822, 10045,

18786-03, 545-1488, 545-1761, and 15616.

M10. Humpback whales
Ethics

Skin samples were collected by the Center for Coastal Studies under research permits
issued by the U.S., National Marine Fisheries Service (21485, 16325, 20465, 14245,
633-1483, 633-1778, 932-1905), the Canadian Department of Fisheries and Oceans

and IACUC #NWAK-18-02.

M11. Cats 13
Ethics

Sample collection was approved by the Clinical Research Ethical Review Board of the

RVC (URN: 2019 1947-2).

M12. Elephants '
Ethics

This study was authorized by the management of each participating zoo and, where

applicable, was reviewed and approved by zoo research committees. In addition, the



study received IACUC approval (#18-29) at the NZP; and endorsement from the

elephant Taxon Advisory Group and Species Survival Plan.

M13. Yellow-bellied marmots 13
Ethics

Data and samples were collected under the UCLA Institutional Animal Care and Use
protocol (2001-191-01, renewed annually) and with permission from the Colorado Parks

and Wildlife (TR917, renewed annually).

M14. Roe deer ¢
Ethics

The protocol of capture and blood sampling under the authority of the Office Francgais
de la Biodiversité (OFB) was approved by the Director of Food, Agriculture and Forest
(Prefectoral order 2009-14 from Paris). The land manager of both sites, the Office
National des Foréts (ONF), permitted the study of the populations (Partnership
Convention ONCFS-ONF dated 2005-12-23). All experiments were performed in
accordance with guidelines and regulations of the Ethical Committee of Lyon 1

University (project DR2014-09, June 5, 2014)

M15. Zebras 17
Ethics

Plains zebra samples were collected under a protocol approved by the Research Safety
and Animal Welfare Administration, University of California Los Angeles: ARC # 2009-

090-31, originally approved in 2009.

M16 Rat 18
The rat tissues came from 4 different labs across three countries:(i) India: Nugenics

Research in collaboration with School of Pharmacy SVKM’s NMIMS University (K.

Singh), (ii) United States: University of Tennessee Health Science Center (H. Chen) and



Medical College of Wisconsin (L.C. Solberg Woods), and (iii) Argentina: University of La
Plata (R. Goya).

Ethics for (i)

The experimental protocols received approval from the Institutional Animal Ethics
Committee under two distinct approval numbers. The first is CPCSEA/IAEC/P-75/2018,
and the second is CPCSEA/IAEC/P-6/2018. The second approval was granted in
accordance with the norms of the Committee for the Purpose of Control and
Supervision of Experiments on Animals (CPCSEA), Government of India, complying
with the standard guidelines for handling experimental animals. It specifically pertains to
the use of male Sprague Dawley rats, aged 8 weeks (200-250 g) and 20 months (400-

450g), procured from the National Institute of Bioscience, Pune, India.

Ethics for (ii)

All procedures were approved by the Institutional Animal Care and Use Committee of
the University of Tennessee Health Science Center or the Medical College of Wisconsin

and followed the NIH Guide for the Care and Use of Laboratory Animals.

Ethics for (iii)

All experiments with animals were performed in accordance with the Animal Welfare
Guidelines of NIH (INIBIOLP’s Animal Welfare Assurance No A5647-01) and approved
by our Institutional IACUC (Protocol # P05-02-2017). Ethics committee approval number

- CPCSEA/IAEC/P-6/2018.

M17. Dog '°
For this study, DNA samples were collected from a total of 742 blood samples taken

from dogs across 93 different breeds. These samples were generously provided by



researchers at the National Human Genome Research Institute (NHGRI). Unfortunately,
we did not have access to individual weight data for these dogs.

Ethics

The collection of these samples was conducted in compliance with ethical guidelines
and was officially approved by the Animal Care and Use Committee of the Intramural

Program of NHGRI at the National Institutes of Health (Protocol #8329254).

M18. Bats 2°
Ethics

The study was approved by the University of Maryland Institutional Animal Care and

Use Committee (FR-APR-18-16).

M19. Cattle 2
Ethics

All animal procedures were carried out in accordance with the relevant guidelines at
each institution. Specifically, procedures related to sample collection in Poland followed
the EU Directive of the European Parliament and the Council on the protection of
animals used for scientific purposes (22 September 2010; No 2010/63/EU), Polish
Parliament Act on Animal Protection (21 August 1997, Dz.U. 1997 nr 111 poz. 724) with
further novelization - Polish Parliament Act on the protection of animals used for
scientific or educational purposes (15 January 2015, Dz.U. 2015 poz. 266). Blood and
oocyte collection were approved by the Local Ethics Committee for Experiments on
Animals, University of Warmia and Mazury in Olsztyn, Poland (Agreement No.
LKE.065.27.2019). For animal procedures in the USA, approval from the University of
Nebraska Institutional Animal Care and Use Committee was obtained (approval number

is 1560).



M20. Mouse data 22
The mouse data were sourced from various institutions or studies, as outlined below: (i)

UCLA Lab. Animal breeding and husbandry 23, (ii) BXD mice 22 from University of
Tennessee Health Science Center, (iii) Growth hormone receptor knockout from the
University of Michigan, (iv) Calorie restricted mice from the University of Texas
Southwestern Medical Center 24, (v) South African species, (vi) Apodemus mice?® , and
(vii) Spiny mouse.

Ethics for (i)

All mice were maintained and bred under standard conditions consistent with National
Institutes of Health guidelines and approved by the University of California, Los Angeles

Institutional Animal Care and Use Committees.

Ethics for (ii)

All animal procedures were in accordance with the protocol approved by the Institutional
Animal Care and Use Committee (IACUC) at the University of Tennessee Health
Science Center.

Ethics for (iv)

The Institutional Animal Care and Use Committee (IACUC) of the University of Texas
Southwestern Medical Center approved the animal protocol (APN 2015-100925), which

has been subsequently renewed every 3 years (2018 and 2021).

Ethics for (v)

The Animal Use and Care Committee of the University of Pretoria evaluated and
approved the experimental protocol and collection of all samples (ethics clearance
number: NAS022/2021, NAS209/2021, NAS021/2020), with DAFF section 20 approval

(SDAH-Epi-21051907211, SDAH-Epi-12/11/1/1/8 (2002 LH), SDAH-Epi-20072707050).



In addition, permission to capture the various species was obtained from all landowners,
and a collecting permit was obtained from the relevant nature conservation authorities
(Permit number: Western Cape- CN44-87-13780, CN44-31-2285, Gauteng- CPF6-
0124, Kwa-Zulu Natal- OP1545/2021). Necessary TOPS permits were also acquired for

threatened species (Permit number: 68103).

Ethics for (vi)

All animal work was conducted in accordance with the UK Home Office in compliance
with the Animals (Scientific Procedures) Act 1986, was approved by the University of
Edinburgh Ethical Review Committee and was carried out under the approved UK

Home Office Project License PP4913586.

Ethics for (vii)

Animal protocols were approved by the Institutional Animal Care and Use Committee

(IACUC) at the University of Kentucky (2019-3254).

M21. Nova Scotia masked shrews (Sorex cinereus) %6
Shrews and small animals from Museum of Biological Diversity at The Ohio State

University

All wild-caught animals were collected and sacrificed in accordance with protocols
approved by The Ohio State University IACUC (Institutional Animal Care and Use
Committee) under protocol number 2017A00000036. All wild-caught animals were
collected with scientific collecting permits issued from Ohio and Washington and
according to guidelines established by the American Society of Mammalogy for the use
of wild animals in research (Sikes & Animal Care and Use Committee of the American

Society of Mammalogists 2016).



M22. Marsupials and mice %’
Ethics

These procedures are in accordance with the AVMA Guidelines for the Euthanasia of
Animals 2013: https://www.avma.org/KB/Policies/Documents/euthanasia.pdf, and all

animal procedures were approved by the UCLA IACUC.

M23. Mammalian liver samples (Diego Villar Lozano and Duncan Odom)
Ethics

The use of all animals in this study was approved by the Animal Welfare and Ethics
Review Board under reference number NRWF-DO-02vs and followed the Cancer
Research UK Cambridge Institute guidelines for the use of animals in experimental
studies. Tissue samples from humans were obtained from Addenbrooke's Hospital at
the University of Cambridge under license number 08-H0308-117, specifically for the

study "Liver specific transcriptional regulation."

M24. Mammalian liver samples from the University of Rochester
Ethics

All experiments were performed according to procedures approved by the University of
Rochester Committee on Animal Resources (UCAR), under animal protocol #101939 /
UCAR-2017-033. The tissues used in the study were obtained from the Gorbunova and

Seluanov tissue bank at the University of Rochester.?8-2°

Murine anti-aging studies
Ethics

Experiments involving Snell, growth hormone receptor knockout (GHRKO), and liver-
specific GHRKO mouse strains (Pl: Richard Miller) were conducted at the University of
Michigan. These experiments were approved by the University of Michigan's

Institutional Animal Care and Use Committee.
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