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Abstract

Although plants and animals both assess their environment and respond to stimuli, this

reaction is considered a behavior in animals and a response in plants. Responses in plants

are seen within various timescales- from the nanosecond stimuli is presented to a lifelong

progression. Within this study, we bridge the gap between animal behavioral studies and

plant response. Sensitive plants (Mimosa pudica L.) are an ideal subject for this due to the

rapid closure of their primary leaflets when touched. We designed a multimodal, or stress

combination, experiment to test two hypotheses with sensitive plants: if they could be dis-

tracted and if they would alter their risk assessment when exposed to external stimuli (wind

and sound). To evaluate the distraction hypothesis, we measured an individual’s latency to

close, hypothesizing that if the plants were distracted, they would take longer to close. To

evaluate the uncertain risk hypothesis, we quantified the latency to reopen, hypothesizing

that if the plants were uncertain, they would take longer to reopen. We also quantified the

number of pinnae closed on the selected stem to test for changes in risk assessment across

treatments. We expected the unimodal treatments would distract or alter risk assessment,

and the multimodal treatment would elicit an enhanced response. Multimodal stimuli had a

significant effect on the number of pinnae closed before the tap, but we found no evidence

that plants were distracted by any stimulus tested. We found that temperature had a signifi-

cant effect on the latency to close, and that plants modified their risk assessment when

exposed to experimental wind stimuli. By manipulating environmental stimuli, we found that

sensitive plants trade-off energy and perceived risk much in the way that is commonly found

in animals. Framing the study of plants’ responses to environmental stimuli as behavioral

questions may generate new insights.

Introduction

Animals and plants both assess risks in their environment and react to stimuli. While that is

generally accepted as a behavioral response for animals, it is more controversial in the case of

plants. We explore how plants process and rapidly respond to their environment, which in
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animals might be a measure of their cognitive abilities [1,2]. Plants respond to a variety of

external stimuli by altering their root or stem path with regards to water, light, gravity and the

avoidance of salt [3–7]. By doing so, they increase their access to favorable growing conditions

and can correct growth patterns. In response to herbivory, Acacia sieberiana grows longer

spines, decreases leaf size, and increases hydrogen cyanide concentration throughout the plant

[8,9]. In contrast to animals, plants have adapted to their environment by developing

responses to stimuli over various time scales.

Some plants have rapid responses to environmental stimuli. These rapid responses indicate

the adaptiveness of the reaction to the organism [10]. For instance, when the plant Arabidopsis
thaliana L. detects the vibration of a caterpillar (Pieris rapae) chewing, it increases production

of toxic aliphatic glucosinolates which protects them from herbivory [11]. Some species within

the genus Passiflora increase pollen collection by moving their androgynophore toward polli-

nators as they feed on the flower’s nectar [12]. Mimulus guttatus prevents self-pollination by

closing its stigmas for a period after a pollinator’s visit [13]. At an even shorter time scale

researchers have analyzed plants’ cell-to-cell signaling (with reactive oxygen species, calcium

ions, and electrical molecular components) immediately after local stimulation [14]. These

rapid response times are more easily observed than those on large time scales and help provide

a basis for applying methods typically used to study animal behavior to plants.

Sensitive plants (Mimosa pudica L.) are a model organism to study plant responses because

they have a rapid antipredator response [15]. When touched, they close (within ca. 15 s) their

primary leaflets and remain closed for 5–15 min [16]. Hagihara et al. [17] recently confirmed

the long-standing assumption that this closure repels predators [16,18]. While pinnae are

closed photosynthetic rates are reduced up to 40% [16]. This creates a trade-off between

acquiring energy via photosynthesis and resistance to herbivory, which is enhanced during

low light [16,19–21]. Similar to animals, this trade-off within sensitive plants is modified as the

leaf ages and will habituate to non-damaging stimuli [22,23]. Recent studies have found that

free-living sensitive plants can distinguish and remember multiple stimuli, do not habituate to

harmful stimuli, and will habituate differently based on age and distance from inflorescence

[22,24].

Organisms are limited in their ability to allocate attention to assessment because attention

is finite [25]. Attention is a controversial term within plant ecology; we define plant attention

as “an overall level of alertness or ability to engage with surroundings” [26]. By focusing too

much attention on risk assessment, individuals may limit their ability to acquire resources

[27]. For instance, mammalian prey of rat snakes (Elaphe climacophora) are distracted by the

snake’s rapid tail movements which mimic prey [28]. Hermit crabs (Coenobita clypeatus) have

an impaired ability to respond to predator cues when exposed to other auditory and visual sti-

muli [25]. Sensitive plants may also become distracted as more environmental stimuli are pres-

ent and this would be seen through slower closing times (i.e., latency to close). We define

distraction regarding plants as an impaired ability to respond or decreased awareness of a true

threat [26].

All organisms are capable of making risk-sensitive decisions under uncertainty [21,29–32].

These decisions trade-off between responding to a predatory cue when a predator is not pres-

ent (false-positive) and failing to respond to a predator cue when a predator is present (false-

negative). Error management theory (EMT) explains how the cost of false-positive and false-

negative outcomes are weighed while in a state of uncertainty [33]. In theory, allocating more

time and energy to risk assessment could reduce uncertainty, but this too is costly if it prevents

individuals from engaging in behaviors that increase their fitness (i.e., foraging, courting, mat-

ing, etc.). Uncertainty within sensitive plants can be measured through increased times they

remain closed (i.e., hiding time).
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We studied free-living sensitive plants to investigate if plants could be distracted by envi-

ronmental stimuli and whether exposure to environmental stimuli altered risk assessment. We

experimentally created wind and noise because plants are regularly exposed to both and, in

principle, both could affect attentional processes and risk assessment as seen in animals

[25,34,35]. Wind could distract an individual or increase uncertainty about whether the plant

was being touched. Sound could have a similar effect as a new vibration, propagating as an

audible wave, that the plant must process and potentially respond to [36]. Although white

noise has not been sufficiently tested within the plant community, within the animal commu-

nity, it can lead to enhanced responsiveness due to its novelty to the organism [35,37,38].

We designed a multi-modal, or stress combination, experiment [39–44] to test sensitive

plant threat assessment for environmental stimuli. The multimodal phenomenon occurs when

stimuli provide information in more than one sensory modality simultaneously. Plants are

constantly being presented with multimodal stimuli within their environment, thus studying

plants’ reactions to multimodal treatments provides a foundation to study the function and

evolution of perception [45,46]. We used portable fans to generate wind across the leaves and a

portable speaker to broadcast white noise. We expected that either stimuli in isolation could

potentially distract individuals or modify their risk assessment. If plants, like many animals,

perceptually bind stimuli, we expected a multimodal treatment would lead to an enhanced

response compared to unimodal treatments [39,41].

Methods

We studied sensitive plants at the UC Berkeley Gump South Pacific Research Station (17˚

29’29.6"S 149˚49’42.7"W) in Moorea, French Polynesia between 14 January and 8 February

2022. Research was conducted with protocols issued on 19 November 2021 by the Government

of French Polynesia. A total of 32 plants were studied on a NE facing hillside below unoccu-

pied bungalows, in an area with direct sunlight (Fig 1). Subjects were� 5 m away from each

other. All subjects were tagged below the second leaf from the apex towards the basis (Fig 2).

As leaf age can affect closure rates [22], we performed all treatments on the second, fully devel-

oped leaf near the apex on the chosen branch and continued on this leaf as the plant grew

(Fig 2). For initial measurements, we recorded the number of pinnae on the chosen leaf, the

number of leaves on the subject, the height of the subject, and the slope under the subject. Tri-

als began 48 h after initial measurements were taken, and at least 48 h after the prior trial. Due

to overgrowth by other species, we cut the surrounding plants between treatment days two

and three to better isolate our test subjects.

Fig 1. Photos of study site at the Gump Marine Lab, Moorea, French Polynesia.

https://doi.org/10.1371/journal.pone.0294971.g001

PLOS ONE Plant risk assessment

PLOS ONE | https://doi.org/10.1371/journal.pone.0294971 December 21, 2023 3 / 14

https://doi.org/10.1371/journal.pone.0294971.g001
https://doi.org/10.1371/journal.pone.0294971


Experiment design

We conducted a multi-modal experiment where individual plants received four different treat-

ments in a Latin Square design: a. control, b. wind, c. white noise, and d. simultaneous wind

and white noise (Table 1). The multimodal treatment was simultaneous presentation of wind

Fig 2. Photos of experimental tap. a) Before experimental tap, b) Experimental tap on the petiole, c) After

experimental tap. Also pictured is the tag below the third fully developed leaf from the apex towards the basis.

https://doi.org/10.1371/journal.pone.0294971.g002

Table 1. Latin-square design is shown on days 1–4. Terminated trials are shown crossed out. Reconducted trials are shown on days 5–7.

Plant Number Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

1 Control Wind Sound Wind + Sound Control

2 Wind + Sound Control Wind Sound Wind + Sound

3 Sound Wind + Sound Control Wind Sound

4 Wind Sound Wind + Sound Control Wind

5 Control Wind Sound Wind + Sound Control Wind Sound

6 Wind + Sound Control Wind Sound Wind

7 Sound Wind + Sound Control Wind Sound

8 Wind Sound Wind + Sound Control

9 Control Wind Sound Wind + Sound Wind + Sound

10 Wind + Sound Control Wind Sound

11 Sound Wind + Sound Control Wind Sound

12 Wind Sound Wind + Sound Control Wind + Sound

13 Control Wind Sound Wind + Sound Wind

14 Wind + Sound Control Wind Sound Sound Wind

15 Sound Wind + Sound Control Wind Control Wind + Sound

16 Wind Sound Wind + Sound Control Wind

17 Control Wind Sound Wind + Sound Control Wind

18 Wind + Sound Control Wind Sound Wind + Sound

19 Sound Wind + Sound Control Wind Control

20 Wind Sound Wind + Sound Control

21 Control Wind Sound Wind + Sound

22 Wind + Sound Control Wind Sound

23 Sound Wind + Sound Control Wind Sound Sound

24 Wind Sound Wind + Sound Control Wind + Sound

25 Control Wind Sound Wind + Sound Wind Wind + Sound

26 Wind + Sound Control Wind Sound Wind + Sound Wind

27 Sound Wind + Sound Control Wind Wind + Sound Control Control

28 Wind Sound Wind + Sound Control Sound Control

29 Control Wind Sound Wind + Sound Control

30 Wind + Sound Control Wind Sound Sound

31 Sound Wind + Sound Control Wind

32 Wind Sound Wind + Sound Control

https://doi.org/10.1371/journal.pone.0294971.t001
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and white noise. First, the treatment and video would start. After one minute, an experimenter

would ‘tap’ the individual plant on the chosen leaf’s petiole with a pen (Paper Mate Ballpoint

300 RT, Newell Office Brands, India) to trigger leaf closure (Fig 2). The tap was performed by

a single experimenter to ensure reproducibility and was practiced beforehand on nonexperi-

mental plants. The treatment and video would continue until all pinnae were completely open.

A trial was only conducted when the Beaufort scale was� 2 and it was not raining. We aimed

to perform each set of treatments every 48 h to decrease the chances of habituation and allow

the individual time to recover. However, we had to terminate many experiments due to

increases in wind and the onset of rain as these are other forms of mechanical stimuli that

interfered with our ability to properly measure the latency to reopen. We terminated any trial

where increased wind or rain activity closed any pinnae before all pinnae opened completely.

After completing each set of planned treatments, we re-conducted any terminated trials at

least 48 h after prior trials (Table 1).

We conducted experiments between 7:00 and 16:30. The average photoperiod range during

the time of our experiment was 5:44 to 18:38. Before each treatment, we recorded the date,

time, treatment, observer, start time, Beaufort scale, cloud coverage (Oktas), ambient noise in

dB with slow time-weighting and A-weighting (NIOSH sound level meter National Institute

for Occupational Safety and Health, Version 1.2.5.63) and temperature (˚C with the Amprobe

IR-712 12:1 IR, 2013 Amprobe Test Tools, China) (Table 2). We began experiments when all

pinnae were open. We recorded experiments using iPhones (Apple Inc. Cupertino, California,

iPhone 8+, iPhone 8, iPhone XS).

We simulated wind using a portable fan (1.56 m/s, Snawowo, Model # 5978S2Q, Longgang

District, Shenzhen), placed 30 cm from the subject and projected at the ventral side of the leaf.

We created a 30 min track of white noise, using Audacity (Audacity1 Version 3.1.3), and

broadcast it at 78.6 dB (measured 1 m away, tested with slow time-weighting and A-weight-

ing), through a UE Boom 2 Wireless Bluetooth Speaker (UE, 984–000553, China). The average

background noise level for the area was 47.5 dB (calculated from measurements taken before

each trial). For consistency, the speaker and fan were set up 90˚ apart.

Video analysis

We analyzed videos to quantify the timing of plant response with Adobe Premiere Pro (Adobe

Inc. Version 22.2). We worked in pairs to score videos, and all four experimenters practiced

scoring the videos together to reduce interobserver variability. We quantified latency to close,

hiding time, and the total number of pinnae closed before experimental tap. We counted the

number of pinnae open before the tap and subtracted that from the total number of pinnae to

find the total pinnae closed. We divided that number by the total pinnae closed to find the pro-

portion closed.

Table 2. Daily averages of temperature, wind, background noise, and cloud cover before each treatment. Cloud cover was not recorded in Oktas during the first two

days of the experiment.

Days Temperature (˚C) Wind (Beaufort) Noise (dB) Cloud Cover (Oktas)

1 26.5 1.4 49

2 26 1.5 48.1

3 28.4 1.5 48.2 4.9

4 29 0.9 48 0.9

5 26.8 1.3 45.5 6

6 28.5 1.8 41.4 2.3

7 30.6 0.6 43.8 1.8

https://doi.org/10.1371/journal.pone.0294971.t002
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We quantified distraction as the latency for the target leaf to fully close after the experimen-

tal tap. We measured to the nearest frame and calculated the time in seconds. Closure was

defined as the frame in which all pinnae ceased to move and was analyzed independently of

stem movement associated with the tap.

We quantified risk assessment as the latency for the target leaf to fully reopen to its initial

state after closure. We stopped the video at this point and recorded the number of frames. We

then converted the number of frames to time in seconds. If any pinnae remained closed, we

defined fully reopened as the time when all but those pinnae opened. Pinnae that were immo-

bile for 3 min would be considered ‘remaining closed’. Additionally, if pinnae interacted with

the surrounding plants or insects and remained closed then these pinnae were not used to

define the latency to reopen.

Statistical analysis

For analysis we eliminated trials conducted while it was raining, during strong wind events

(Beaufort > 2), high temperatures (� 35˚C), abnormally large latencies to reopen (> 1,000 s),

and when there were technological malfunctions. This left 113 trials in our final data set across

32 individuals. Treatments were evenly distributed among individuals (C, M, W = 28; S = 29).

Before fitting models to study distraction and assessment, we checked to see if environmental

conditions were confounded by conducting a chi-squared test to see if there was a relationship

between Beaufort and treatment type (there was not, P = 0.620). To test for potential multicol-

linearity, we correlated all continuous independent variables; there was none (correlation coef-

ficients all< 0.49). The data for latency to re-open and latency to close were transformed to

better fit a normal distribution.

We fitted three sets of linear mixed models–one for each of our dependent variables: latency

to open, latency to close, and the number of pinnae closed offset by the total number of pinnae.

For each dependent variable, we began with a model that included the following fixed effects:

treatment, treatment day (number of trials performed thus far on each individual) to account

for any habituation [47], Beaufort scale, and ambient noise (dB) because our stimuli had physi-

cal (wind) and acoustic elements. Plant identity (or each subject) was included as a random

effect in all models. We then systematically added potential obscuring variables one by one–

temperature, plant length, total number of pinnae–to these basic models and included these

additional covariates in the final model only if significant.

Models were fitted using the R package “lme4” package [48]. We tested our models to

ensure that they met the assumptions of linear mixed models with a Gaussian distribution

using the “check model” function included in the “performance” package in R [49]. We used

the emmeans package [50] to test for the pairwise difference between treatment types, which

we ran with no adjustments for our multiple planned comparisons [see 51–54]. We also used

the emmeans package to calculate Cohen’s d–a measure of effect size. We used the partR2

package in R [55] to calculate and compare the marginal and conditional part R2 values for the

fixed effects.

Results

Immediate response to treatment

The number of pinnae closed on the leaf prior to the experimental tap varied significantly with

treatment (P< 0.001), and the planned comparison of treatments showed that the number of

pinnae closed in multimodal treatments was significantly higher from control (P< 0.001;

d = 1.006 ± 0.281), sound treatment (P< 0.001; d = 1.310 ± 0.302), and wind treatment

(P = 0.013; d = 0.756 ± 0.302; Table 3A; Fig 3A). The other treatments were not significantly
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different from the control (P> 0.05 for C-S and C-W contrasts; Fig 3A). There was no signifi-

cant effect of treatment days (P = 0.944), noise (P = 0.755), or Beaufort scale (P = 0.586)

(Table 3A; Table 4A). Treatment explained 11.2% of the variance in the number of pinnae

closed, while plant identity explained 16.7% of the variance in the number of pinnae closed

(Table 3A; Table 4B).

Test of distraction

Plants did not vary their latency to close following an experimental tap as a function of treat-

ment (P = 0.417; Table 3B). There were no significant differences in the latency to close

between control and the other treatments, or between the other treatments and each other (Fig

3B), and the effect sizes tended to be larger in the contrasts between different stimulus treat-

ments (dM-S = 0.461 ± 0.288; dM-W = 0.240 ± 0.297; dS-W = 0.221 ± 0.277) than in the contrasts

between stimulus treatments and the control (dC-M = 0.307 ± 0.272; dC-S = 0.154 ± 0.292; dC-W

= 0.067 ± 0.299) (Fig 3B). There were also no significant effects of treatment days (P = 0.242),

noise (P = 0.197), or Beaufort (P = 0.977) on the latency to close (Table 3B; Table 4A). How-

ever, we found that at higher temperatures (Est. = -0.025 ± 0.006), plants closed more slowly

(P< 0.001) (Table 3B; Table 4A). Temperature explained 11.3% of the variance, while plant

identity explained 12.1% of the variance in latency to close (Table 3B; Table 4B).

Test of modified risk assessment

There was a moderately significant effect of treatment on the latency to reopen (P = 0.073;

Table 3C). Plants varied their latency to reopen significantly between control and wind

Table 3. P-values and part R2 values for fixed effects in each model. Marginal part R2 values quantify the variance explained by each fixed effect, whereas the conditional

part R2 values quantify the variance explained by both the fixed effect and the random effect (plant number).

p value Conditional

Part R2
Marginal

Part R2

(a) Pinnae Closed

Treatment < 0.001 0.279 0.112

Treatment Days 0.944 0.167 < 0.001

Noise 0.755 0.171 0.004

Beaufort 0.586 0.170 0.003

Conditional R2

0.588

Marginal R2

0.421

(b) Latency to Close

Treatment 0.417 0.141 0.020

Treatment Days 0.242 0.132 0.011

Noise 0.197 0.134 0.013

Beaufort 0.977 0.122 < 0.001

Temperature < 0.001 0.234 0.113

Conditional R2

0.271

Marginal R2

0.150

(c) Latency to Open

Treatment 0.073 0.172 0.047

Treatment Days 0.010 0.173 0.048

Noise 0.630 0.126 < 0.001

Beaufort 0.059 0.153 0.028

Conditional R2

0.287

Marginal R2

0.162

https://doi.org/10.1371/journal.pone.0294971.t003
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treatments (P = 0.016; d = 0.735 ± 0.303) as well as between control and multimodal treat-

ments (P = 0.040; d = 0.567 ± 0.274; Fig 3C). There was no significant difference between con-

trol and sound treatments (P = 0.113; d = 0.466 ± 0.293), nor between multimodal and wind

treatments (P = 0.569; d = 0.168 ± 0.295) (Fig 3C). In addition, plants took longer to reopen

Fig 3. a. Number of pinnae closed, b. latency to open, c. latency to close as a function of treatment. Treatments include

C (control), M (multimodal), S (sound), and W (wind).

https://doi.org/10.1371/journal.pone.0294971.g003
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(Est. = 0.019 ± 0.007) as a function of treatment days (P = 0.010) and there was a moderately

significant effect of environmental wind speed (P = 0.059), but there was no effect of ambient

noise (P = 0.630; Table 3C; Table 4A). Treatment explained 4.7% of the variance in reopening

time, while plant identity explained 12.5% of the variance in reopening time (Table 3C;

Table 4B).

Discussion

Overall, the multimodal experimental presentation of wind and white noise modified sensitive

plant response. Plants closed more of their pinnae at the start of the treatment when exposed

to the multimodal stimuli. Wind and sound treatments alone did not have a significant effect

on the number of pinnae closed when compared to the control, and both these treatments

were statistically different from the multimodal treatment. This suggests that the multimodal

treatment had an additive effect on the plant’s initial assessment of risk because they produced

a greater response when the stimuli were combined rather than when they were introduced

independently.

We found no support for the distraction hypothesis because there were no differences in

the latency to close as a function of treatment. It is important to note that our experimental

wind was 1.56 m/s, which is approximately a 2 on the Beaufort scale. Because we performed

experiments when natural wind events occurred at the same Beaufort scale value, it is possible

that the experimental wind used was not sufficiently high to distract individuals, but we

selected this velocity because it did not result in the plants closing all their pinnae before the

experimental tap. Future studies could investigate whether stronger wind distracts sensitive

plants. Not unexpectedly, we found significant effects of temperature on the latency to close. It

has long been known that temperature may alter closing and opening patterns of this species

Table 4. : Estimates for fixed effects in each model; B: Variance and SD of random effects in each model.

A Est. SE

(a) Pinnae Closed

Treatment Days 0.078 1.097

Noise 0.104 0.333

Beaufort -1.388 2.542

(b) Latency to Close

Treatment Days 0.012 0.011

Noise -0.003 0.003

Beaufort < -0.001 0.023

Temperature -0.025 0.006

(c) Latency to Open

Treatment Days 0.019 0.007

Noise -0.001 0.002

Beaufort -0.033 0.017

B Variance Standard Deviation

(a) Pinnae Closed

Plant ID 100.8 10.04

(b) Latency to Close

Plant ID 0.004 0.061

(c) Latency to Open

Plant ID 0.002 0.046

https://doi.org/10.1371/journal.pone.0294971.t004
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[56]. What was not known was the relative importance of temperature’s effect; temperature

alone explained 11.3% of the variance in closing time.

Our multimodal experimental design allowed us to isolate the effect of wind on the latency

to reopen and permitted us to infer that the physical manipulation of plants by the wind modi-

fied risk assessment. Wind alone had a large effect (dC-W = 0.735 ± 0.303) and the addition of

sound reduced this effect (dC-M = 0.567 ± 0.274). The novelty of white noise may have led to

enhanced responsiveness leading to the decreased latency to reopen for the multimodal treat-

ment [35]. However, it would be premature to exclude the possibility that there is an interac-

tive effect with sound given that the number of pinnae closed before we tapped the plant was

greatest when both stimuli were combined. Wind alone physically moves the plant’s leaves,

which may impede their ability to reopen in ways that sound does not. It is possible that plants

may be responding to the mechanical movement as a direct threat, or wind may have impaired

the plant’s ability to assess risk due to increased uncertainty. We studied plants during the

rainy season and observed that wind was generally associated with changes in cloud cover or

rain. Other studies have shown that changes in light availability [47] and temperature [56]

modify sensitive plants’ reopening times and the open leaf angle, respectively. Additionally,

rain acts as a physical stimulus, triggering leaf closure. These sensitive plant environmental sti-

muli responses might explain why wind triggers the plants to modify their risk assessment.

While we did not detect a significant effect of sound on the latency to reopen, the effect size

compared to the control was moderate (d = 0.466 ± 0.293). This suggests that in a larger sam-

ple size we may have detected a significant difference. Previous studies have shown that plants

alter their response in the presence of sounds [e.g., 5,11,57,58]. Although studies within the

animal kingdom have shown that animals alter their response to white noise [35,38], the previ-

ous plant studies used biologically relevant sounds (e.g., herbivores eating a leaf, pollinators

flying). Therefore, it is possible that using a more relevant sound in our study may elicit differ-

ent responses as well.

Unlike what was reported in previous sensitive plant studies [22,24,47,59], we found that

plants sensitized rather than habituated to repeated trials. Plants took longer to reopen as the

number of trials performed on the individual increased. However, these previous studies were

not presenting potentially aversive stimuli to the plants. Our experimental sound was loud and

synthetically created, and our experimental wind was moderate yet consistent. Both of these

stimuli are different from what sensitive plants would naturally encounter which may have led

to the increased sensitivity to the stimuli that was observed. Although we did not test for

motor fatigue [60], we do not believe our experiment led to fatigue as each plant had only one

treatment every other day. Other sensitive plant studies found that a similar non-harmful stim-

ulus did not cause fatigue within a shorter time interval [22,24]. As our plants were free-living,

their responses could have been altered or fatigued by numerous environmental factors before

their treatment (for an individual) or during a given day (for the group) [61].

We found that individuality explained over 12% of the variance in each experiment (16.7%

—pinnae closed, 12.1%- latency to close, 12.5%—reopening time). Individuality of our subjects

could come from differences in morphology or anatomy, behavior due to life cycle stages,

developmental noise, or the surrounding environment (e.g., insect exposure, soil composition,

the last wind or rain event, etc.) [20,22,47,53,62–64]. Observation of plant individuality has

often been disregarded as an experimental error or oversimplified through statistics as popula-

tion responses [62,65]. Although we were able to quantify individuality, we cannot further

specify what caused it despite our analysis of various environmental, anatomical, and geo-

graphic factors. Further research in a controlled environment should clarify the cause of this

found individuality within sensitive plants.
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Our study illustrates the successful application of models of antipredator behavior to inves-

tigate plant responses to environmental stimuli. Using sensitive plants, prior studies have eval-

uated other behavioral concepts that are typically restricted to animals [individuality– 47;

habituation- 59, 47; movement-based defense– 17, 18; risk assessment– 22,24]. Trade-offs are

a common theme: multiple papers [16,19,20] found sensitive plants traded off photosynthesis

and predation risk by showing that individuals closed for a longer period when light was more

intense. Sensitive plants allow investigations into plants’ learning and memory as non-neural

organisms, bettering our understanding of how different species use information from their

environment to survive [23]. Framing the study of how plants respond to environmental sti-

muli as behavioral questions can be a profitable way to generate new insights.
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