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Abstract 
Across animal systems, abiotic environmental features, including timing of seasonal events and weather patterns, affect 
fitness. An individual’s degree of social integration also has fitness consequences, but we lack an understanding of how 
abiotic features relate to patterns of individual sociality. A deeper understanding of this relationship could be developed 
from studying systems where these two links with fitness have already been identified. We explored the relationship between 
individual social behavior and seasonal timing, seasonal length, and weather patterns. We used social network analysis on 
a sixteen-year dataset of a wild population of hibernating yellow-bellied marmots (Marmota flaviventer). We fit a series of 
generalized linear mixed models and found that longer growing seasons before winter hibernation and longer winters were 
associated with increased individual sociality in the following spring. However, later snowmelt was associated with decreased 
sociality that spring. We found no relationship between individual sociality and various measures of precipitation and tem-
perature. This suggests that seasonal timing and length may be a more important driver of sociality than weather patterns in 
this system, both as a lag and contemporary effect. Seasonal timing and length may mediate the opportunity or intensity of 
social interactions. The entwined relationships between the seasonal schedule and weather, and the seemingly contradictory 
role of winter length and snowmelt, suggests the timing of seasons and its relationship with sociality is complex and further 
exploration of environment-sociality relationships is required across taxa.

Significance statement
While the adaptive benefits of social behavior are well studied, less is known about how features of the abiotic environment 
drive variation in individual social behavior. Given increasing stochasticity in the timing of seasonal events and weather pat-
terns, mapping the environment-sociality relationship will provide important insights to the drivers of sociality in the wild. 
This is particularly salient for species most vulnerable to climate and environmental change, such as seasonal hibernators, like 
yellow-bellied marmots (Marmota flaviventer). We found that features of seasonal duration were positively associated with 
increased sociality, whereas the timing of seasonal onset was negatively associated. This work provides empirical evidence 
towards an important gap in the behavioral ecology literature.

Keywords  Seasonal timing · Social behavior · Social network position · Environmental variation · Drivers of sociality · 
Yellow-bellied marmot

Introduction

The role of abiotic environmental features as a potential 
driver of animal fitness is well documented. Environmental 
features like the seasonal timing and length, weather pat-
terns, and resource availability have been linked to a variety 
of fitness correlates including reproductive success (Pipoly 
et al. 2013), survival (Requier et al. 2017), and physiological 
state (Loe et al. 2016) across animal systems. For exam-
ple, environmental conditions, like high-rainfall during 
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the breeding season, affect variability in mean number of 
eggs produced in superb starlings (Lamprotornis superbus; 
Rubenstein 2011). Wild brook trout (Salvelinus fontinalis) 
experience reduced survival in lower flow and warmer 
streams (Letcher et al. 2015). Warmer ocean water is asso-
ciated with decreased mating activity of intertidal barnacles 
(Fistulobalanus albicostatus), resulting in reduced larvae 
production and smaller populations (Fraser and Cha 2019). 
Alpine marmots (Marmota marmota) have lower rates 
of juvenile survival during colder winters (Rézouki et al. 
2016) and decreased reproductive success with smaller win-
ter snowpacks (Tafani et al. 2013). These studies highlight 
important associations between the abiotic environment and 
fitness correlates in wild animals.

The fitness consequences of individual and group social 
behaviour are also well documented. Social network analy-
sis, when linked with biological attributes, provides specific 
context to how socially connected individuals and groups 
are and their associations with fitness (Kurvers et al. 2014; 
Croft et al. 2016; Philson et al. 2022). Measures of indi-
vidual sociality, such as degree and strength, quantify direct 
social connections in the form of the quantity and quality of 
social partners, whereas measures such as clustering coeffi-
cient and embeddedness quantify both an individual’s direct 
and indirect social connections in the form of direct social 
partners also being social partners themselves and the inte-
gration of an individual in their larger network (Ellis et al. 
2019). While some species may have positive fitness benefits 
from increased sociality, either directly or indirectly (Ruben-
stein 1978; Ellis et al. 2019; Snyder-Mackler et al. 2020), 
others may experience negative consequences (Gillespie and 
Chapman 2001; Hughes et al. 2002; Hackländer et al. 2003). 
For example, more social individuals, measured via cluster-
ing coefficient, are associated with increased reproductive 
success in forked fungus beetles (Bolitotherus cornutus; For-
mica et al. 2012) as social connection fosters opportunity 
for mating activity. Increased social connectivity was also 
associated with increased disease transmission in Tasma-
nian devils (Sarcophilus harrisii; Hamede et al. 2009) and 
longevity in rock hyraxes (Procavia capensis; Barocas et al. 
2011). Group-level social structure also has fitness implica-
tions for the individuals that comprise the group, as residing 
in certain group social structures can increase or limit social 
stress and predation pressures (Solomon-Lane et al. 2015; 
Philson et al. 2022; Costello et al. 2023; Philson and Blum-
stein 2023a, b). These studies reveal that residing in groups, 
an individual’s position within the group, and group’s social 
structure may have individual fitness consequences.

There is vast literature highlighting the relationship 
between fitness and features of the abiotic and social envi-
ronments, yet our understanding of how abiotic environ-
mental factors relate to patterns of individual social posi-
tion is more nuanced (Pinter-Wollman et al. 2014; Fisher 

et al. 2021; Blumstein et al. 2023). Environmental features 
may influence social interactions, potentially affecting the 
survival and reproductive success of individuals within 
the group (Fisher et al. 2021; Blumstein et al. 2023). For 
example, habitat structure changes the group social struc-
ture of sleepy lizards (Tiliqua rugosa; Leu et al. 2016) and 
resource distribution increases individual connectivity and 
cliquishness in forked fungus beetles (Costello et al. 2022). 
While these studies highlight the presence of a link between 
the physical environment and patterns of sociality in some 
systems, further study is required, especially in wild, free-
living systems. This is important because there is increasing 
variation in timing of seasonal events and weather patterns 
(Visser and Gienapp 2019). A deeper understanding of this 
relationship could be developed from studying systems 
where the link between the physical environment and fitness, 
and social behaviour and fitness, has already been identified 
(Fisher et al. 2021).

The yellow-bellied marmot (Marmota flaviventer) 
population at the Rocky Mountain Biological Labora-
tory (RMBL) in Colorado has been studied annually since 
1962. Previous work on this system identified some of the 
complex environmental drivers of fitness and the mostly 
negative fitness consequences of social relationships. 
For example, yellow-bellied marmot survival decreases 
with decreased snow cover and after summers with low 
precipitation (Cordes et al. 2020). Later growing season 
start dates are associated with smaller litters (Downhower 
and Armitage 1971; Prather et al. 2023). Studies of the 
relationship between social network measures and fitness 
correlates show that strong social relationships are often 
costly for yellow-bellied marmots. More frequent social 
interactions (i.e., higher values for the strength measure) 
result in reduced reproductive success of female mar-
mots (Wey and Blumstein 2012) potentially due to the 
physiological and energetic costs of social relationships. 
Strong social relationships have also been associated with 
decreased hibernation survival (Yang et  al. 2017) and 
decreased lifespans across demographic groups (Blumstein 
et al. 2018). Marmots residing in more connected social 
groups (i.e., groups that are less likely to fracture in two 
or more separate groups if social connections are lost) also 
have decreased reproductive success (Philson and Blum-
stein 2023a) and summer survival (Philson and Blumstein 
2023b). However, in some cases increased sociality, may 
be beneficial, with more connected adult females having 
increased summer survival (Montero et al. 2020) and indi-
viduals residing in more reciprocal and socially homo-
geneous groups gaining body mass faster (Philson et al. 
2022) and having increased winter survival (Philson and 
Blumstein 2023b). The context of these environmental and 
social relationships with fitness, along with the detailed 
and longitudinal dataset, makes this study system ideal to 
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contextualize and develop a specific hypothesis to identify 
potential relationships between environmental factors and 
the social characteristics of individuals.

We developed an a priori hypothesis for the relationships 
between physical environment and sociality. We hypothe-
sized that weather patterns and seasonal timing and lengths 
that enhance individuals’ body condition and opportunities 
for social interaction will increase individual connectedness, 
the latter of which is typically associated with fitness costs 
in this system, but is beneficial in specific cases (i.e., sum-
mer survival). To quantify the environment-sociality rela-
tionship, we used 19 environmental measures of seasonal 
timing, seasonal length, and weather conditions (categorized 
into previous growing season length, snowpack depth, win-
ter length, and end of winter, precipitation, temperature) 
and four attributes of individual sociality, measuring both 
their direct connections (i.e., degree and strength) and their 
indirect interactions (i.e., clustering coefficient and embed-
dedness). These four measures have been previously linked 
to fitness consequences in this system (Wey and Blumstein 
2012; Yang et al. 2017; Blumstein et al. 2018).

With this specific information to ask questions of the 
environment-sociality relationship, we transformed our 
broad hypothesis into more specific a priori predictions. We 
predicted longer growing seasons would be associated with 
increased individual sociality (e.g., more social partners, 
more integrated into their broader network) the following 
spring. The rational is because longer growing seasons allow 
for greater fat storage entering hibernation (Armitage et al. 
1976; Armitage 1999, 2000), in turn increasing the likeli-
hood of emerging with a better relative body mass (Lenihan 
and Van Vuren 1996; Howland et al. 2024); individuals can 
then allocate time to social interactions rather than to forag-
ing and energy conservation (Armitage et al. 1976; Ozgul 
et al. 2010; Tafani et al. 2013; Cordes et al. 2020). Similarly, 
we predicted shorter winters would be positively associated 
with sociality, again facilitating improved relative body 
mass and time available for social activities. However, not 
all winters are the same – the depth of the snowpack is an 
important predictor of hibernacula conditions and hiberna-
tion survival in a variety of Marmota species (Ozgul et al. 
2010; Patil et al. 2013; Tafani et al. 2013; Rézouki et al. 
2016; Cordes et al. 2020). We predicted greater maximum 
winter snowpack depth would be positively associated 
with sociality because of the increased insulation of deeper 
snowpacks facilitating less expenditure of stored metabolic 
energy, again facilitating healthy body mass and time budg-
ets for sociality upon emergence (Patil et al. 2013; Tafani 
et al. 2013; Rézouki et al. 2016; Cordes et al. 2020). Lastly, 
we predicted a later end to winter would be negatively asso-
ciated with sociality due to the decreased time above ground 
and, consequently, less time for social interactions (Down-
hower and Armitage 1971; Prather et al. 2023).

For more traditional measures of weather, we predicted 
cooler and less variable temperatures and increased precipi-
tation in the fall would be associated with increased sociality 
the following spring as cool temperatures and more precipi-
tation may facilitate plant growth and in turn, permit mar-
mots to store more fat for the winter. This is partly informed 
by the established association between lower precipitation 
and decreased survival in this system (Cordes et al. 2020), 
which may also be attributable to the availability food 
resources leading up to hibernation. We predicted warmer, 
drier springs would be associated with increased sociality 
as warmer temperatures will melt snow more quicky, and 
less precipitation will allow marmots to spend more time 
outside the burrow, both allowing for more time to socialize 
and greater access to food resources.

In short, we hypothesized that seasonal timings and 
lengths and weather favorable to body mass gain and social 
interaction opportunity will be associated with increased 
individual sociality, which in this system is typically associ-
ated with fitness costs, but is beneficial for summer survival.

Materials and methods

Study system

The yellow-bellied marmots around RMBL (38°57’N, 
106°59’W; ca. 2900 m elevation) are facultatively social 
and harem-polygynous, living in matrilineal colonies with 
one or a few territorial males (Frase and Hoffmann 1980; 
Armitage 1991; Olson and Blumstein 2010). Marmots are 
active for around five months annually (early mid/late-April 
to mid-September), hibernating over winter (socially or soli-
tarily) and mating soon after emerging from hibernation. 
New pups emerge and yearlings disperse around late-June/
early-July. Nearly half of all females and most males dis-
perse as yearlings, typically out of the study area (Armit-
age 1991). Marmots spend the summer months developing 
body fat reserves in preparation for hibernation and avoiding 
predation – both of which have relevance for sociality in the 
form of time budgets (Armitage 1999; Pollard and Blum-
stein 2008). Resident marmots are observed and repeatedly 
live trapped during their active season (i.e., when they are 
not hibernating) with virtually all individuals in our study 
population uniquely marked, permitting accurate identifi-
cation of interacting individuals. Body mass was recorded 
throughout the year at every trapping event. This data was 
used to calculate best linear unbiased predictions (BLUPs) 
by fitting linear mixed effects models from the repeated body 
mass recordings for yearlings and adults from 2002–2021 to 
predict 1 June and 15 August body mass, as these are dates 
proxies for early and late season body mass (see Maldonado-
Chaparro et al. 2015b; Kroeger et al. 2018; Heissenberger 
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et al. 2020; Philson et al. 2022 for details on our BLUPs). 
Social interactions were recorded during hours of peak activ-
ity over the entire active season from distances that lim-
ited the observer effect and then classified using a detailed 
ethogram described in Blumstein et al. (2009). The initiator 
and recipient, time, location, and type of each interaction is 
recorded. Some 79% of interactions are between identified 
individuals. We excluded interactions where an individual 
could not be identified (due the interacting individuals’ pos-
ture or visual obstructions) from our data, which should not 
significantly influence social structure (Silk et al. 2015). We 
only include individuals observed or trapped more than five 
times in a year to eliminate individuals dispersing through 
the study area (Wey and Blumstein 2012; Fuong et al. 2015; 
Yang et al. 2017; Blumstein et al. 2018). It was not possible 
to record data blind because our study involved focal animals 
in the field.

Social networks

Marmots share space with a subset of all possible individu-
als within their colony area. We defined social groups based 
on space-use overlap (two individuals seen or trapped at 
the same location and time, or observed using the same 
burrow, within one-day intervals). To define social groups, 
we used space-use overlap to calculate simple-ratio pair-
wise association indices (Cairns and Schwager 1987) using 
SOCPROG (version 2.9; Whitehead 2008) for adults and 
yearlings for each year (pups were not included due to mid-
season emergence and mostly interacting with each other 
and their mother). We used the random walk algorithm Map 
Equation (Csardi and Nepusz 2006; Rosvall and Bergstrom 
2008; Rosvall et al. 2009) to identify social group member-
ship from these simple-ratio pairwise association indices. 
While Map Equation assigns each individual to only one 
social group, this can exclude key social connections, such 
as those with adult males. Because adult males often mate 
with females from multiple matrilines and have important 
interactions with members of multiple groups, we added 
adult males to each social group for which they had at least 
one social interaction with a member of that group to enable 
more accurate social network measures. However, each year, 
a male’s network measures were only calculated from their 
originally assigned group.

With these group assignments, we constructed directed 
and weighted social networks based on affiliative inter-
actions (e.g., greeting, allogrooming, play) using the R 
(version 4.1.2; R Development Core Team 2023) package 
“igraph” (version 1.2.11; Csardi and Nepusz 2006). We 
focused on affiliative social interactions because they relate 
to marmot fitness (Wey and Blumstein 2012; Fuong et al. 
2015; Yang et al. 2017; Blumstein et al. 2018; Philson and 
Blumstein 2023a, b) and because they comprised 88% of all 

social interactions. Social networks consisted of yearling and 
adult females and males and of social interactions occurring 
from emergence from hibernation (mid-April) through the 
end of June as a majority of social interactions occur during 
this timeframe and vegetation growth impairs observations 
later in the active season. Social networks were constructed 
from 33,479 social interactions between 666 unique indi-
viduals in 210 social groups from 2003–2020. Group sizes 
ranged from 3 to 31 individuals with a mean of 13.34 indi-
viduals (SE = 0.302).

We calculated four social network measures to quantify 
individual social position and connectivity. We selected 
these measures because of their established relationship 
to fitness in past studies both within this system (Wey and 
Blumstein 2012; Yang et al. 2017; Blumstein et al. 2018) 
and others (Hamede et al. 2009; Barocas et al. 2011; For-
mica et al. 2012; Ellis et al. 2019). Degree quantifies the 
number of social partners an individual has (Flack et al. 
2006; Blumstein et al. 2009). Strength quantifies the number 
of social interactions an individual engages in (Wasserman 
and Faust 1994; Montero et al. 2020). Clustering coefficient 
quantifies an individual’s local cliquiness with their direct 
social partners (i.e., whether an individual’s direct con-
nections are also connected to each other; Wasserman and 
Faust 1994; Lehmann et al. 2015). Embeddedness quanti-
fies how integrated into their social group an individual is 
(see Moody and White 2003 for equation; Blumstein et al. 
2009). Individuals with higher values for embeddedness 
have more direct social partners and are a central individual 
in their local network with their direct partners also being 
well connected, directly and indirectly themselves. Our 
estimates of the measures’ reliability are facilitated by our 
behavioral observations of marmots across their entire active 
season (mean number of observations per individual across 
years = 28.81, range of each year = 6.79– 75.14) and low rate 
of unknown individuals involved in social interactions (Silk 
et al. 2015; Davis et al. 2018; Sánchez-Tójar et al. 2018). 
Because group size inherently influences these social net-
work measures, we included group size as a fixed effect in all 
models to account for this (see ‘Data analysis” subheading).

Environmental measures

We calculated environmental measures by quantifying 
aspects of weather patterns (i.e., temperature, precipitation), 
seasonal timing and length, and predation pressures (Fig. 1). 
Each environmental measure was selected for its relevance 
and applicability in this system and we developed a priori 
prediction for each measure. We calculated two suites of 
these environmental measures, a lag period (from the previ-
ous active season/winter) and a contemporary period (from 
the spring of the year for which social networks were calcu-
lated) (Prather et al. 2023). Temperature and precipitation 
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data comes from the weather station located at the center of 
our study sites. Snowmelt and predation data was collected 
in the field annually for each colony area (Martin et al. 2014; 
Cordes et al. 2020; Nash et al. 2020).

The lag period had ten environmental measures. For the 
months of July–September that preceded the spring social 
networks we calculated, (1) mean maximum temperature 
(°C), (2) mean minimum temperature, (3) variance in maxi-
mum temperature, (4) variance in minimum temperature, (5) 
mean daily precipitation (rain or snow; inches), (6) total pre-
cipitation, and (7) number of days with precipitation (Travis 
and Armitage 1972; Inouye et al. 2000; Cordes et al. 2020). 
The (8) growing season length of the previous active season 
was defined as the date of 50% snowmelt at each colony area 
to the date of the first vegetation killing frost (-3 °C; Inouye 
2000) in the valley (Blumstein 2013; Martin et al. 2014; 
Cordes et al. 2020). We also calculated the (9) length of 
winter from the date of the first vegetation killing frost to the 
date of 50% snowmelt the following year at each colony area 
and the (10) maximum snowpack depth (Cordes et al. 2020).

The contemporary period had nine environmental meas-
ures. For the months of April-June of the year that social 
networks were calculated for, (1) the mean maximum tem-
perature, (2) mean minimum temperature, (3) variance in 
maximum temperature, (4) variance in minimum tempera-
ture, (5) mean daily precipitation, (6) total precipitation, and 
(7) number of days with precipitation (Travis and Armitage 

1972; Inouye et al. 2000; Cordes et al. 2020). Additionally, 
we calculated the (8) date of 50% snowmelt to tease apart 
the length of winter and the ending of winter/start of the 
growing season as they could have opposing relationships 
with sociality (Johns and Armitage 1979; Martin et al. 2014; 
Cordes et al. 2020). Lastly, we fitted (9) predation index 
as a binary variable calculated by whether the number of 
predators observations at that colony was below or above the 
median number of predator observations across all colony 
areas in that year (Armitage 1982; Nash et al. 2020). We 
include a predation index in the contemporary period models 
because of the strong evidence for predation pressures as a 
driver of individual sociality (Rubenstein 1978; Armitage 
1999, 2014), and therefore we want to evaluate the asso-
ciation between predation pressure and individual sociality 
relative to attributes of the physical environment to assess 
the potential role of predation in this system.

Data analysis

To test the relationship between attributes of individual soci-
ality, seasonal timing and length, and weather patterns, we 
first fitted two suites of linear models that correspond with 
the lag and contemporary periods described above. All con-
tinuous variables, except degree, were standardised (mean-
centered and divided by one SD using the “scale” function 
in base R; (Becker et al. 1988) to facilitate comparisons 

Fig. 1   Conceptual figure illustrating the environmental measures used in each period. Asterisks identify statistically significant environmental 
variables (Table 1; Fig. 2)



	 Behavioral Ecology and Sociobiology           (2024) 78:58    58   Page 6 of 13

between models. Strength, clustering coefficient, embed-
dedness, and group size were log10 transformed before scal-
ing. We employed no other transformations. Models were 
fit using “lme4” (Bates et al. 2014, 2015a, b) and model 
assumptions were checked after fitting. The models for 
degree were fit with a Poisson distribution and a bobyqa 
optimizer with 20,000 iterations. Despite strength also being 
a count variable, we could not accurately fit strength as a 
Poisson distribution, and therefore strength, clustering coef-
ficient, and embeddedness were all fitted as linear mixed 
models. There was no significant multicollinearity between 
any of our fixed effects (VIF ≤ 5).

In addition to the environmental measures fitted in the 
lag and contemporary period models, both suites of mod-
els also included individual age, body mass, and the size 
of their social network (n individuals) as fixed effects. The 
drivers of individual sociality in this system are multicausal 
and previous studies have suggested age (Wey and Blum-
stein 2010; St. Lawrence et al. 2022), body mass (Ozgul 
et al. 2010; Armitage 2014; Kroeger et al. 2018), and social 
group size (Wey and Blumstein 2012; Maldonado-Chaparro 
et al. 2015a) have important links with sociality. Individual 
social connections are also a potential driver of mass gain 
rate in this system (Philson et al. 2022). Thus, we include 
body mass as a fixed effect because it could be a mediator of 
the environment-sociality relationship. 15-August mass was 
fit for the lag period models and 1-June mass for the con-
temporary period models (as estimated with BLUPs; Ozgul 
et al. 2010; Kroeger et al. 2018) as these dates align with the 
period we were quantifying.

In both the lag and contemporary period suites of models, 
Individual ID and year were included as random effects to 
account for annual demographic differences (Maldonado-
Chaparro et al. 2015b; Kroeger et al. 2018; Heissenberger 
et al. 2020) and individuals observed over multiple years. 
Models for the lag period had 762 observations consisting of 
466 unique individuals in 111 social groups across 14 years. 
Models for the contemporary period had 842 observations 
consisting of 510 unique individuals in 123 social groups 
across 16 years. The lag period has two fewer years of data 
as we did not have marmot colony specific environmental 
data in 2001 or 2009 (see Supplementary Table 1 and 2 for 
these initial model results).

To better understand the relative importance of the envi-
ronmental variables for individual sociality, we identified 
the variables that were statistically significant in the lag and 
contemporary period models, interpreted as P < 0.05, and 
placed these variables into one model, per measure of soci-
ality. This final combined suite of models included (1) the 
growing season length and (2) the length of winter from 
the models for the lag period, (3) the date of 50% snowmelt 
from the models for the contemporary period (see Supple-
mentary Fig. 1 and 2 for inter- and intra-year variation in 

these environmental measures). No other environmental 
variables were statistically significant in the original two 
suites of models. Age, body mass, and group size were 
maintained as fixed effects in these final combined mod-
els (as they were statistically significant). Individual ID and 
year were also maintained as random effects in these final 
combined models. However, these final combined models 
experienced some VIF issues (i.e., > 6). For the degree, 
strength, and embeddedness models, we removed growing 
season length (because it had the largest VIF value). After 
removal, all subsequent variables to have a VIF < 5. These 
final combined models had 708 observations consisting of 
432 unique individuals in 109 social groups across 14 years, 
except for clustering coefficient, which could not be calcu-
lated for some individuals, and thus had 648 observations 
consisting of 416 unique individuals in 103 social groups 
across 14 years.

We calculated (using “partR2”; Nakagawa and Schielzeth 
2013; Stoffel et al. 2021, 2022) the marginal and conditional 
R2 values for each model to estimate variance explained by 
all the fixed effects and all the fixed and random effects for 
each model (Table 1). We calculated the semi-partial mar-
ginal and conditional R2 that estimate variance explained by 
each fixed effect alone (Table 1). We estimated 95% confi-
dence intervals for our R2 values using 100 parametric boot-
strap iterations. We plotted marginal effects for each signifi-
cant relationship using “ggplot2” (version 3.4.1; Wickham 
2016) and “sjPlot” (2.8.12; Lüdecke 2022) (Fig. 2).

Results

We found that seasonal timing and length, not weather pat-
terns, had a statistically significant relationship with all four 
of our social network measures (Table 1; Fig. 2). Winter 
length was positively associated with degree (B = 0.158; 
p = 0.036; SE = 0.075) and clustering coefficient (B = 0.314; 
p = 0.008; SE = 0.101). The length of the previous grow-
ing season was positively associated with clustering coef-
ficient (B = 0.196; p = 0.005; SE = 0.066). The date of 50% 
snowmelt was negatively associated with degree (B = -0.168; 
p = 0.01; SE = 0.065), strength (B = -0.369; p = 0.018; 
SE = 0.138), clustering coefficient (B = -0.31; p = 0.002; 
SE = 0.086), and embeddedness (B = -0.262; p = 0.031; 
SE = 0.111).

June body mass (the contemporary period) had a nega-
tive statistically significant relationship with each of the 
four social network measures whereas August body mass 
(the lag period) had a positive statistically significant 
relationship with three of the four social network meas-
ures (i.e., degree, strength, and embeddedness; Table 1). 
Age had a negative statistically significant relationship 
with strength (B = -0.124; p = 0.016; SE = 0.051) but a 
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positive statistically significant relationship with cluster-
ing coefficient (B = 0.116; p = 0.044; SE = 0.057). Group 
size had a positive statistically significant relationship 
with degree, strength, and embeddedness, and a negative 
statistically significant relationship with clustering coef-
ficient (Table 1).

On average, the four models explained 26.1% 
(range = 12.7%—38.9%) of the marginal variance and 40.1% 
(range = 20.4%—48.6%) of the conditional variance. Mar-
ginal and conditional semi-partial R2 values for each fixed 
effect can be found in Table 1.w

Fig. 2   Statistically significant relationships (plotted as marginal 
effects) between the network measures for individual sociality and 
the attributes of the physical environment (with 95% CIs). Both the 
response and predictor variables are scaled (mean-centered and 

divided by one SD). Fig. was generated with R package “sjPlot” 
(Lüdecke 2022). Darker points indicate more overlaid data whereas 
lighter points indicate less overlaid data
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Discussion

When exploring the relationship between individual social-
ity and attributes of the weather patterns and seasonal timing 
and length, we found modest relationships for three attrib-
utes of seasonal timing and length. We showed that a longer 
growing season before winter hibernation was associated 
with an increase in an individual’s connectedness within 
their social clique (i.e., clustering coefficient) the following 
spring, supporting our a priori prediction. Contrary to our 
a priori prediction, we found that longer winters were also 
associated with increased sociality (i.e., degree and cluster-
ing coefficient) in the following spring. However, we found 
that later snowmelt date was associated with a decrease in 
sociality that spring (i.e., degree, strength, clustering coef-
ficient, and embeddedness), supporting our a priori pre-
diction. We found no relationship between environmental 
measures quantifying weather patterns, such as precipitation 
and temperature, and individual sociality, rejecting our a 
priori predictions. This lack of a significant association sug-
gests that seasonal timing and length, more so than weather 
patterns, may be one of many important drivers of animal 
sociality and relationships.

The association between a longer growing season before 
hibernation (lag period) and increased sociality the follow-
ing spring (contemporary period) could be due to an increase 
in available metabolic energy (Ozgul et al. 2010; Canale 
et al. 2016). Fat storage is an important predictor of winter 
survival in hibernating mammals (Nedergaard and Cannon 
1990; Humphries et al. 2003) and yellow-bellied marmots 
can lose up to 40% of their body mass during hibernation 
(Armitage 2014). For Marmota species, a longer growing 
season allows for more fat accumulation (Ozgul et al. 2010; 
Tafani et al. 2013; Rézouki et al. 2016), increasing both the 
likelihood of hibernation survival and individual body mass 
when emerging the following spring (Armitage 1994; Armit-
age et al. 1976; Lenihan and Van Vuren 1996; Ozgul et al. 
2010). Thus, marmots with larger spring body mass (as a 
function of their body mass before hibernation) may have 
to allocate less time and energy to foraging, allowing more 
resources to engage in social interactions (Ozgul et al. 2010; 
Blumstein et al. 2023).

The correlation between longer winters and increased 
individual sociality has a less simple explanation and seems 
contradictory to other findings at first glance. Seemingly, 
longer winters (i.e., marmots hibernating longer) would 
require marmots to use more metabolic energy to stay 
warm, depleting fat reserves resulting in emergence with 
less body mass the following spring (Ozgul et al. 2010; 
Tafani et al. 2013; Rézouki et al. 2016). Lower metabolic 
energy in spring could in turn result in less individual soci-
ality. Contrary to our hypothesis that longer winters will 

be correlated with decreased sociality (via less body mass/
metabolic energy to interact in spring), we found that longer 
winters were correlated with increased sociality. Our results, 
however, did show a largely positive relationship between 
previous fall body mass (of the lag period) and the fol-
lowing spring’s sociality, and a largely negative relation-
ship between the spring’s body mass (of the contemporary 
period) and spring sociality. We additionally fitted interac-
tion terms between the environmental variables and June 
and August body mass in the final combined models, which 
further support the direction and statistical significance of 
the relationship with body mass (Supplementary Table 3). 
Taken together, these two results suggest entering hiberna-
tion with a large body mass increases sociality the following 
spring whereas emerging in spring with poor body mass 
(potentially due to the length or severity of winter) decreases 
sociality that spring as less metabolic energy is available for 
social interactions.

However, this logic for body mass is complicated by two 
factors, at least in this system. First, winter length is not the 
only factor contributing to hibernation’s metabolic energy 
demands. Deeper snowpacks serve as an insulating blanket, 
shielding hibernacula from the harsh winter weather above 
the snow (Ozgul et al. 2010; Cordes et al. 2020). In Alpine 
marmots, colder winters and thinner snowpacks has a nega-
tive association with winter survival (Rézouki et al. 2016) 
and reproductive success the following year (Tafani et al. 
2013), demonstrating how winter conditions have impacts 
on spring biology. Thus, we fitted the initial lag models 
with maximum snowpack depth as a covariate. Snowpack 
depth did not emerge as a statistically significant predictor 
in these models, potentially complicating this explanation 
when additionally considering sociality. Second, our a priori 
prediction stated that longer winters would be negatively 
associated with sociality because marmots would have less 
time to socialize if they emerged later in the spring. A major-
ity of social interactions happen in the first 5–6 weeks after 
emergence. Yearling dispersal and pup emergence starts 
in late-June and continues into July. Individuals may over-
compensate and become more social if they emerge later 
to maintain nominal social bond formation and timing of 
mid-active season life history events. Thus, we had fitted the 
date of 50% snowmelt as a covariate because this measure 
generally marks the end of winter in our system (Van Vuren 
and Armitage 1991; Blumstein 2009). However, the date of 
snowmelt had a relationship that was opposite these poten-
tial explanations.

We found later snowmelt was associated with being less 
social, suggesting it was not just the length of winter that 
mattered, but also the timing of winter’s end. The explana-
tion may again be tied to body mass, as indicated by the 
negative relationship between spring body mass and spring 
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sociality; later snowmelt may mean a longer hibernation 
which may result in less fat reserves when they emerge in the 
spring (Ozgul et al. 2010; Tafani et al. 2013; Rézouki et al. 
2016). This association is also observed in Alpine marmots 
(Canale et al. 2016) and other mammals (Kautz et al. 2020; 
Wells et al. 2022). However, as just discussed, body mass as 
a potential explanation is nuanced and complicated by other 
environmental factors, like snowpack depth and snowpack 
density (Inouye et al. 2000; Ozgul et al. 2010; Cordes et al. 
2020; Prather et al. 2023). Our results may reflect how envi-
ronmental change and shifts in seasonal timing and length 
are impacting life-history traits in this system. In 2000, yel-
low-bellied marmots emerged 38 days earlier than in 1977, 
apparently in response to warmer spring air temperatures 
(Inouye et al. 2000). Later emergences may be a mismatch 
to current conditions and lead to fitness and energetic deficits 
(Visser and Gienapp 2019; Kucheravy et al. 2021), which 
underlie sociality in this system. Overall, these findings sup-
port our overall a priori hypothesis environmental features 
favorable to body mass and social interaction opportunity are 
associated with increased individual sociality.

A theme woven through these potential explanations is 
how environmental change and seasonal shifts influence 
summer and winter survival (Sæther and Bakke 2000; Gail-
lard and Yoccoz 2003; Prather et al. 2023) because popula-
tion densities are associated with social group size (Carneiro 
1967; Griffiths and Magurran 1997). For example, popula-
tion size is associated with group size, and group size is 
strongly associated with individual social network measures 
(Wasserman and Faust 1994), particularly in our system 
(Maldonado-Chaparro et al. 2015a). In this system, winter 
survival is largely driven by conditions during the preceding 
active season and the impact of continued environmental 
change, and seasonal shifts are likely to be mainly negative, 
whereas summer survival is likely to be positively impacted 
(Cordes et al. 2020). The pathway for how variation in the 
environment drives variation in social behavior and posi-
tion is complex and multifactorial and will continue to face 
dynamic shifts (Blumstein et al. 2023; Prather et al. 2023).

In this system, stronger social ties resulted in reduced 
female reproductive success (Wey and Blumstein 2012), 
decreased hibernation survival (Yang et al. 2017) and shorter 
lifespans (Blumstein et al. 2018). Therefore, attributes of the 
environment associated with increased sociality may have 
downstream fitness and demographic consequences in mar-
mots, and potentially other systems (Rézouki et al. 2016; 
Fisher et al. 2021; Wells et al. 2022). However, more social 
females experience increased summer survival in this system 
(Montero et al. 2020). Thus, short-term positive fitness con-
sequences may be experienced from longer growing seasons 
and longer winters.

The complex and overlapping interactions between envi-
ronment, sociality, and fitness are widely unknown. That is, 

the fitness consequences of environmental change as medi-
ated by sociality are poorly understood (Blumstein et al. 
2023). Formal structural equation modelling may help iden-
tify the direct and indirect ways that environmental measures 
effect fitness by potentially acting through their effects on 
sociality (Blumstein et al. 2023).

Ultimately, more work is required that explores the 
complex relationship between the environment and sea-
sonal timing and sociality. Future work should also more 
appropriately account for potential non-linear relationships 
in both environmental and social attributes. For example, 
the relationship between the environment and sociality 
may be mediated by age in this system as we know mar-
mots become less social as they age (Wey and Blumstein 
2010). While some work has explored the environment-
sociality intersection in wild systems, very little work has 
explored this relationship in hibernating species. Because 
hibernating species are exposed to dynamic environments 
at multiple life-history stages (Wells et al. 2022) and may 
be more sensitive to environmental change and seasonal 
shifts than daily heterotherms (Geiser and Kenagy 1988; 
Geiser 2021), more research into the abiotic environment-
sociality intersection in hibernators is especially needed. 
Further, the timing of seasons and weather are not inde-
pendent given that the timing of seasonal events is influ-
enced by a myriad of weather variables. However, our 
measures of seasonal timing and length had a stronger 
association with sociality in this system than weather pat-
terns, which may be a consequence of the marmot’s hiber-
nation period being dictated by a multitude of intertwined 
weather variables. Further work teasing apart the inter-
twined nature of these environmental attributes and their 
relation to animal social behavior in the wild is required.

In summary, we have shown that the patterns of sea-
sonal timing and length have a complex relationship with 
individual social behaviour and position. It is not just how 
long seasons are, but also the timing of seasonal events. 
The complex role of the abiotic environment on animal 
sociality demands further research across animal and 
social systems in our ever-changing world.
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