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Highlights
Timely evidence syntheses for biodiver-
sity conservation are challenged by
increasingly time-consuming tasks, a
broad evidence base, and persistent
underfunding.

Incorporating artificial intelligence (AI) into
the synthesis process can lead to de-
monstrable benefits for evidence synthe-
sis, but can also introduce challenges.
Systematic evidence syntheses (systematic reviews and maps) summarize knowl-
edge and are used to support decisions and policies in a variety of applied fields,
frommedicine and public health to biodiversity conservation. However, conducting
these exercises in conservation is often expensive and slow, which can impede
their use and hamper progress in addressing the current biodiversity crisis. With
the explosive growth of large language models (LLMs) and other forms of artificial
intelligence (AI), we discuss here the promise and perils associated with their use.
We conclude that, when judiciously used, AI has the potential to speed up and
hopefully improve the process of evidence synthesis, which can be particularly
useful for underfunded applied fields, such as conservation science.
Thoughtful, transparent, and responsible
application of AI can overcome barriers
that limit the update of evidence synthe-
sis in conservation and can support
timely, equitable, and inclusive, and effi-
cient evidence-informed conservation
decision-making.

Yet, consensus on how such an applica-
tion can be achieved requires scientists,
practitioners, software developers, and
other stakeholders to work together.

We offer recommendations for con-
ducting reviews using AI, encouraging
appropriate scrutiny, transparency, and
human-machine collaboration.
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Biodiversity conservation needs evidence synthesis
Biodiversity conservation requires rapid decisions that, ideally, are made with the best available
scientific evidence. Through rigorous, transparent, and repeatable methods, systematic evidence
syntheses (systematic reviews and systematic maps; see Glossary) are recognized as the
gold standard for cataloging, collating, and synthesizing the available evidence to support decision
making from public health to environmental management and conservation [1] (Box 1). However,
conducting systematic evidence syntheses can often be expensive and slow [2]. With the conserva-
tion literature growing exponentially, the endeavor can rapidly become unmanageable for human re-
viewers and irrelevant for managers and policy advisors, who look for timely scientific evidence to
support their decisions [3]. Several solutions have been proposed for more rapid forms of evidence
synthesis (e.g., [1,4,5]), which raises the challenge of potentially having to trade speed of the review
processwith comprehensiveness or exhaustiveness, thus reducing the reliability of the review findings.

AI and machine-learning (especially deep learning) tools are revolutionizing how evidence is
synthesized in biomedical sciences [6]. While there are key differences between biomedicine
and conservation research, we make the case here that AI tools can also dramatically improve
evidence syntheses and decision making for biodiversity conservation. We do so by first highlighting
the potential role of AI in biodiversity conservation, and then discussing the benefits and challenges
of using AI, especially LMMs in this field. Given that these tools are still in their infancy [7,8], we clarify
their role in synthesizing text-based scientific evidence for conservation decision making, and
propose suggestions for the responsible and ethical use of AI in conservation science.

Artificial intelligence is revolutionizing conservation science
AI, initially the realm of science fiction, is now firmly entrenched in our daily lives, and continues
to revolutionize the way we interact with each other, our world, and even the universe. In
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Box 1. Evidence hierarchy for decision support in conservation with AI

For scientific evidence to be useful or usable, information must be distilled, amalgamated, and translated from a large
collection of individual studies to an output that can inform decision making. Figure I illustrates how different types of
knowledge, information, and expert opinions, primary (individual studies) and secondary research (e.g., systematic reviews
and review of reviews) feed into decision support systems (i.e., tools that provide different scenarios and logical sets of
steps to assist with decision making [65]). Outputs from these systems help create evidence-informed advice and guides.
The pyramid demonstrates how, at each step, the scientific evidence gradually becomes more ‘condensed’ and, hence,
more accessible to conservation decision makers.

Each step of evidence synthesis could be supported and expedited by AI and LLMs, including: (1) question formulation;
(2) protocol generation; (3) literature search; (4) screening to select relevant papers (including deduplication); (5) critical
appraisal of included studies; (6) data extraction; (7) synthesizing information; and (8) transparent reporting (Figure I).
Recently, Jimenez and colleagues identified 63 machine-learning tools for systematic evidence syntheses [6]. They
showed that most of the currently available tools primarily support the three review stages: searching, screening, and data
extraction. For example, BIBOT uses keywords to search and retrieve relevant papers from PubMed [66], while Rayyan
facilitates screening by reordering papers in the order of relevance, learning from included and excluded papers [67]
(see also Box 2 in the main text). None of the tools in their review used LLMs, but LLMs can immediately be used in these
three stages andmore. For instance, a generative AI platform, Elicit (elicit.com), can extract information and summarize pdf
documents.

In addition, LLMs can facilitate ‘summaries’ turning long academic documents (such as systematic reviews) into distilled
key messages for policy and practice. Furthermore, LLMs can help create algorithms and software for decision support
systems [3].
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Figure I. Hierarchy of scientific evidence used in conservation decision making. Modified and redrawn from [65].
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conservation science, AI technologies are already extensively and creatively deployed in myriad
ways for research and management purposes, from AI tools to expose online wildlife trafficking
[9] and drones with machine and deep learning capabilities to identify, track, and monitor
wild animals [10], to the use of interactive robots to understand and control the spread of inva-
sive species [11]. By contrast, using rapidly emerging AI tools, such as LLMs, to allow for more
efficient evidence synthesis to support conservation decision making, holds great potential, but
remains relatively new.

Machine-learning algorithms use artificial neural networks, which are trained by large amounts
of data (referred to as a corpus). Whereas simple machine learning is an approach to classify and
facilitate discrimination between two or more entities, LLMs are able to recognize, summarize,
translate, predict, and generate text without any training or only a few instructions as a form of
Trends in Ecology & Evolution, June 2024, Vol. 39, No. 6 549
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Glossary
Artificial intelligence (AI): a machine
or model that can perform what
appears to require human intelligence. It
also refers to a branch of computer
science dedicated to creating these
models. Recently, generative AI has
gained much attention with its ability to
create text, images, audio, and other
media.
Artificial neural networks: method
used in machine learning whereby the
connections and strength of connections
between a set of nodes (which are
modeled after neurons in the brain) are
iteratively modified to maximize some
desired output (e.g., a discrimination).
Originally, these networks had several
layers of nodes between input and
output, but deep learning models have
many layers of nodes.
Deep learning: type of machine
learning that relies on multiple layers of
connected nodes the connections and
weights of which are iteratively modified
so as to maximize their ability to make
discriminations or identifications;
requires a huge amount of training.
Evidence syntheses: involve a process
of combining information from multiple
studies on a specific topic and to inform
decisionmaking. The term is also used as
an umbrella term for the family of reviews
that include systematic reviews,
systematic maps, rapid reviews, and
reviews of reviews.
Human-in-the-loop (HITL): process
of model development in machine
learning where humans have an
interactive and iterative role.
Large languagemodel (LLM): type of
generative AI created by a deep learning,
neural network trained on a large written
corpus that can ‘understand’ human
language and generate responses to
specific queries.
Living systematic reviews: systematic
reviews that are continuously updated to
incorporate new evidence as it is
produced.
Machine learning: process by which
data are fed into neural network models,
which are iteratively modified without
specific instructions that permit the
identification of patterns in data.
Prompts: specific inputs or instructions
to a LLM designed to elicit an answer.
The growing field of prompt engineering
studies the characteristics of effective
prompts, which in general should be
specific and constrained. Creating a role
(‘you are a fastidious researcher
prompts (known as zero-shot or few-shot learning). In the medical sciences, where evidence
synthesis methods are well developed and widely used, recent studies demonstrate the promising
role that AI tools can have in carrying out rapid and extensive literature reviews [8,12]. At the same
time, there is also discourse around potential challenges and limitations regarding the usefulness of
these platforms [7,13–15].

Benefits and challenges of using AI for evidence synthesis
Speed
Conservation science is a race against time. Using AI and LLM tools can reduce the time required
to perform systematic evidence syntheses by assisting in various stages of the work [6], including
communicating the results to relevant stakeholders [3]. Researchers have shown that the use
of LLM tools can substantially shorten, by as much as sixfold, the time spent screening relevant
research [8,12,13] (Box 2). LLMs could also be applied to (meta)data extraction from relevant
studies and summarize a collection of articles more efficiently [8,16,17]. At present, different AI
tools have different limits to the amount of data that can be inputted into, or processed by,
them. Some free versions of AI tools may be swamped by large screening tasks [17], which
could limit their use by funding-restricted conservation agencies. Speed is desirable, but without
expert oversight, there are likely to be issueswith accuracy and reliability by increasing the pace of
evidence syntheses [i.e., a human-in-the-loop (HITL) process is necessary].

Comprehensiveness, accuracy, and reliability
Systematic evidence syntheses aim to reduce human bias in the assessment of scientific
evidence, but human biases (e.g., selection and language biases [18]) and inconsistencies
among human reviewers in study selection and data extraction are known issues in these syntheses
[19]. Using LLM tools can assist in reducing these human biases. For example, by improving
prompts, Spillias et al. increased the accuracy of screening with ChatGPT (reducing type II errors
to <1%) [13]. By helping locate potentially useful gray literature sources, which can be a critical
source of biodiversity conservation evidence [20,21], LMMs can help further reduce the effects of
publication bias on review comprehensiveness, and can act as a second or third nonhuman
reviewer to tackle screening inconsistencies [13].

While AI tools may reduce some human biases, they can introduce errors. LLMs can miss impor-
tant and relevant articles during screening [8] and, more broadly, the reliability of different AI tools
can vary greatly throughout the synthesis process [22] (Table 1). Missing relevant informationmay
be especially problematic in conservation research, where the best solutions are often context
dependent [23], which can lead to incorrect management guidance. AI tools may also generate
overconfident and potentially erroneous conclusions and create harm in real-world applications
[17]. Misinterpretation errors, where text is improperly summarized, creates an improper under-
standing of the content. Fabrication errors, where a summary includes information not in the
original text, refer to a broad class of ‘hallucinations’ that are well-known outputs from LLMs.
Attribute errors relate to any nonkey elements in the review question (e.g., the misevaluation of
the number of interventions or treatments). Thus, substantial human validation of LLM outputs
is essential at each stage of review construction (i.e., HITL [8]).

Complexity
Compounding the problem of reliability, conservation research is characterized by some unique
complexities. Specifically, the field is highly heterogeneous, and includes studies that span a
variety of ecosystems and species, applying a panoply of study designs and dependent variables
that can be measured in various ways (cf. [24]). The field often draws on evidence from many
different disciplines, from psychology and physiology to biochemistry and animal behavior. In
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Box 2. Speeding up screening with AI: a case study

There are several AI-assisted article screening tools, most of which use reordering algorithms that learn from included/
excluded articles as researchers screen based on title and abstract. More recently, LLMs have been suggested to be used
for such screening [13]. We tested both types: Rayyan.ai (re-ordering algorithm) and GPT 3.5 (LLM) to screen 11 270
article search records from the Web of Science for relevance to the question: how does artificial light affect bird movement
and distribution? These articles were manually screened by Adams et al. [68] (Figure I).

Rayyan.ai’s relevance ratings could have reduced themanual screening burden at the title/abstract level by over 80%, with
accuracy comparable to a human-alone screening. We provided initial training data by classifying 46 articles we knew to
be relevant as ‘include’ and classified 46 additional articles as ‘exclude’. Rayyan computed relevance ratings for the re-
maining articles, and we sorted them by relevance and screened the first 100. We then recomputed the ratings, re-sorted
the records, and screened the next 100 articles. We repeated the process until no additional relevant articles were found,
which occurred at ~2200 articles. This method identified 169 (97%) out of 174 relevant articles in the screening data set
after screening <20% of the articles. Notably, this process yielded five articles missed by a human screener during the
original screening process, meaning that the human-alone and this AI-assisted method (Rayyan.ai) had equivalent false
negative rates in this case (2.9%).

For GPT 3.5, we used the following prompt “Classify the given research paper as worthy of inclusion or exclusion… The
paper should be classified as ‘include’ or ‘exclude’. You are a careful and thorough researcher conducting a systematic
review of the effect of artificial light on bird movement and distribution. Given a title and an abstract of a research paper,
your task is to determine whether the paper meets the criteria for inclusion in a review study.”. Following this message, this
prompt also included the published abstract along with screening criteria. For the initial run (i.e., zero-shot learning) it
retrieved 66 of 215 relevant articles (30%). For the second run, we provided 46 included and excluded articles, and
GPT 3.5 was able to retrieve 200 out of 215 (93%) articles. It took 2.5 h for each run to screen 11 270 articles.

TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure I. Many studies have investigated the relationship between artificial light at night and birdmovements.
Photo by Joshua Woroniecki.
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conducting a systematic review…’) can
help improve output accuracy.
Systematic map: comprehensive
catalogs of the literature on a broad topic
of interest. Systematic maps follow the
same step-wise process as systematic
reviews, but they tackle broader
questions, and their final output is a
narrative report and a searchable
catalog of the literature that can be used
to identify areas where evidence is
lacking or is under-represented
(knowledge gaps), or areas with
sufficient evidence to conduct full
synthesis (knowledge clusters).
Systematic review: formal and highly
structured process to comprehensively,
rigorously, and transparently collate and
synthesize evidence, including the
academic and gray literature sources;
can be used to support policy formation
and biodiversity management decisions.
Zero-shot or few-shot learning: a
direct query to an existing LLM is
referred to as a zero-shot query where
the results of zero-shot queries are
based entirely on the information already
contained in the LLM. By contrast, few-
shot learning requires some additional
data, for instance, where the LLM is
provided with a list of papers that, based
on their title and abstract, should be
included or excluded from a systematic
review.
addition, the language and terminology used in conservation can be highly inconsistent, with
many synonyms for similar terms [25]. For example, the terms ‘invasive’, ‘introduced’, ‘exotic’,
‘alien’ or ‘non-native’ species, ‘weed’, and ‘pest’ can all have the same meaning, depending
on context. Finally, most published conservation research does not test practical, real-world inter-
ventions [26]. Therefore, evidence producers must make fine-grained decisions about where
Trends in Ecology & Evolution, June 2024, Vol. 39, No. 6 551
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Table 1. AI tools and platforms for evidence synthesisa

Stage of synthesis Example tools and platformsb Opportunities Potential challenges and
considerations

Identify and formulate
review questions

Gemini (Google DeepMind; https://gemini.google.com/)
Scite (scite; https://scite.ai/)

Facilitate question formulation through
assistance with brainstorming and
refinement [7]

Some stakeholders might feel
disengaged or excluded by
process, potentially hampering
innovation and even reinforcing
existing biases [7,41]

Draft review protocol Gemini (Google DeepMind; https://gemini.google.com/)
ChatGPT (OpenAI, https://chat.openai.com)

Assist in creating good initial outline
and, hence, speeding up process for
protocol writing [7,42]

Risk of ‘hallucinations’may cast
doubt on protocol accuracy [16,17]
Protocol may lack details and/or
correct references [16]

Search for evidence Elicit (Elicit; https://elicit.com/)
Scite (scite; https://scite.ai/)
Consensus (Consensus; https://consensus.app/)
Scispace (PubGenius Inc; https://typeset.io/)
ConnectedPapers (Connected Papers; www.
connectedpapers.com/)
Inciteful (M. Weishun, 2024; https://inciteful.xyz/)
Litmaps (Litmaps Ltd; www.litmaps.com)
Gemini (Google DeepMind; https://gemini.google.com/)
ChatGPT (OpenAI, https://chat.openai.com)

Help with suggesting and finding
variety of gray literature sources,
including in different languages [43]
Suggest alternative terms for search [7]
Help to incorporate evidence as it
becomes available [44]

Inconsistent and incomplete search
terms that can reduce search
efficiency and increase potential for
selection bias [45]
Changes to algorithm may change
search results [7,46]
Search results may be probabilistic,
erroneous, and not repeatable [7]
Can only make use of digitized
knowledge [47]

Include relevant studies Rayyan (Ouzanni et al, 2016; www.rayyan.ai/)
Abstrackr (Brown University; http://abstrackr.cebm.
brown.edu/account/login)
DistillerSR (DistillerSR Inc; www.distillersr.com/)
EPPI-Reviewer (EPPI Centre; eppi.ioe.ac.
uk/EPPIReviewer-Web)
SWIFT-Active Screener (Sciome; www.sciome.com/
swift-activescreener/)
ASReview (ASReview Lab; https://asreview.nl/)
Silivi (A-Evidence ApS; www.silvi.ai/)

Substantially reduce screening time
(see Box 2 in the main text)
In case of double screening, act as
second reviewer to tackle screening
inconsistencies [48,49]

May inadvertently pass on relevant
studies [50,51]
Changes to algorithm may change
screening results [7,46]
Lack of transparency around
algorithm development and
decision making [52]
Screening decisions may be
probabilistic and not repeatable [7]

Critically appraise
studies

RobotReviewer [53] (www.robotreviewer.net/)
Elicit (Elicit; https://elicit.com/)

Speed up otherwise time-consuming
process [53,54]

Difficulties in dealing with more
complex and diverse study designs
and different reporting styles [55]
Interpretation and extraction errors
[16,56]
Lack of transparency around
algorithm development and
decision making [52]

Extract data Scispace (PubGenius Inc; https://typeset.io/)
RobotReviewer [53] (www.robotreviewer.net/)
SWIFT-Review (Sciome; www.sciome.com/
swift-review/)
Silivi (A-Evidence ApS; www.silvi.ai/)
ExaCT (https://exact.cluster.gctools.nrc.
ca/ExactDemo/intro.php)
Elicit (Elicit; https://elicit.com/)

Efficient at extracting data and
metadata (e.g., moderators and study
descriptors) [53,57]

Difficulties in dealing with more
complex and diverse study
designs and different reporting
styles [53,55,57]
Interpretation and extraction errors
[16,56]
Lack of transparency around
algorithm development and
decision making [52]
May not be reliable in obtaining
effect sizes [58]

Synthesize data/study
findings

ChatGPT (OpenAI, https://chat.openai.com)
Gemini (Google DeepMind; https://gemini.google.com/)

Potentially efficient at running simple
quantitative syntheses (meta-analysis)
of evidence as well as narratively
synthesizing study findings [59,60]

Sophisticated quantitative (e.g.,
meta-regression) synthesis still
difficult to conduct [59,61]

Report findings ChatGPT (OpenAI, https://chat.openai.com)
Scispace (PubGenius Inc; https://typeset.io/)

Efficient at scientific communication
because it can assist scientists in
improving their writing style by
analyzing text and provide
suggestions for improvements [14,62]

Lack of transparency around
algorithm development and
decision making [63,64]
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academic studies are sufficiently solution oriented or relevant, while trudging through disparate and
highly variable gray literature. Such complexities and nuances need to be taken into account when
developing search prompts, screening, and oversight of results, and when models are updated to
ensure reliability and accuracy of results generated by LLMs [27]. However, robust methods for
dealing with such complexities are yet to be developed.

Relevance over time
The evidence base for conservation is rapidly accumulating and evidence syntheses can quickly
become outdated. In a rapidly changing world, the effectiveness of interventions might also
change with time. Thus, systematic reviews that are not regularly updated may lead to significant
inaccuracies over time [28,29]. Living systematic reviews have been developed to provide
high-quality, up-to-date online summaries that incorporate relevant new evidence as it becomes
available [28,30]. Such reviews require continuous work and a level of commitment that is often
hard to achieve. Here, LLMs can be used to support living reviews and ensure that the evidence
base remains up to date with minimal human effort [30,31]. However, because the outputs of
LLMs may change over time (because the algorithms and training sets change), their perfor-
mance will require human evaluation.

Inclusivity
In our view, one of the major benefits of using LLMs in synthesis is their ability to find conservation
evidence from across the globe, particularly in languages other than English [32]. Most of the world’s
remaining biodiversity is found in the Global South, yet most scientific evidence to inform decision
making comes from authors in the Global North and is published in English [33]. Local studies from
the Global South are often missed or discarded from reviews if they are not written in English.

By translating languages, AI tools can make all stages of the review process more inclusive (Box 1).
For example, a review of community-based fisheries management focusing on the Pacific Islands
[13] benefited from AI rapidly providing a list of non-English relevant terms to be integrated into
the search string and yielded additional articles not previously identified by the original search.
However, AI-suggested terms should be checked by proficient speakers of the language in
question before inclusion in the search string.

Nevertheless, it is important to emphasize that AI tools require accessible digitized information.
Moreover, the original training to create LLMs requires sufficiently large data sets that currently
exclude most of the world’s languages [34,35]. Therefore, exclusively relying on AI for information
means that some traditional and local knowledge may be ignored. This process could reduce the
effectiveness of conservation interventions at the local scale and widen the divide between conser-
vation agencies and local communities [36]. In this respect, we emphasize that effective conserva-
tion work relies just as heavily on building strong relationships with the relevant stakeholders as
using the most accurate scientific evidence (e.g., [37]). The use of AI may alienate local collabora-
tors if not conveyed and properly communicated to all stakeholders and rightsholders.

Ethical considerations
The question, in our view, is not whether AI tools will/should be used in conservation science
(the singularity is nigh!), but rather how they are used. Issues of data privacy and informed
Notes to Table 1:
aWe highlight both opportunities and potential challenges and considerations. In regard to the latter, many of the challenges we have identified can be resolved by having
HILT and greater procedural transparency. Stages of synthesis mirror those outlined in Figure I in Box 1 in the main text.
bA nonexhaustive list with an emphasis on new and popular platforms.
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consent created by emerging AI technologies can be exacerbated through their use in systematic
evidence syntheses. People may not wish for their published data to be used for AI training or to
be repurposed and applied to new problems. In this regard, continuous effort to actively engage
various stakeholders in the synthesis process is even more crucial in the context of AI application
to evidence synthesis.

A well-recognized concern with using AI is the presence of (algorithmic) biases that result from
factors such as the unknown data quality and representativeness in training corpus [38,39]. As
previously discussed, it is likely that documents written in English and from high-income countries
form the bulk of the training corpus, which may limit the nature of responses to specific queries
and enhance existing biases. Therefore, there is an urgent need for culturally sensitive multilingual
LLMs [40]. Moreover, in the current LLM landscape, there is a lack of transparency around
algorithm development and reporting related to decisions that algorithms make during the review
Box 3. Guiding principles for responsible AI use in evidence syntheses for conservation

Acceptable practices of using AI are evolving rapidly. For example, AI has been used to improve writing for years (many
already use Grammarly or Microsoft Grammar Checker), but some publishers currently limit or prohibit LLM-produced text
from being used in papers. With this state of flux in mind, we make the following recommendations (Figure I).

First, while AI tools offer considerable promise, use them cautiously. We do not currently understand, in various contexts,
the precision, accuracy, specificity, or reliability of AI tools, and the developers themselves are unclear about how some AI
tools and models work [69]. As these tools are applied to specific conservation issues, effort will have to be allocated to
estimate these sources of error and optimize algorithms [70,71].

Second, view AI tools as a research assistant: it is essential to keep humans as supervisors of AI decision making
(i.e., HITL). In the context of systematic evidence syntheses, AI decisions should be validated against established evidence
synthesis standards and guidelines for conduct and reporting (e.g., [1,72,73]).

Third, AI is currently more reliable in some evidence synthesis steps (such as title and abstract screening and, to some extent,
search strategy design and full-text screening) compared with others (such as data extraction and critical appraisal). To
prevent relevant omissions for search strategy and screening supported by AI, there is a need for detailed scoping exercise
that will test all phases of the review before it is conducted.

Finally, we urge AI developers to provide decision files that facilitate the scrutiny of AI algorithms, because transparency is
crucial (e.g., see ASReview AI software [63]), and we should make decision data files accessible [12]. The evidence
synthesis community urgently needs a guide for reporting of AI-supported reviews (e.g., PRISMA extension PRISMA-
DFLLM for LLM [74]). Such transparency will help build trust between evidence producers and evidence users.

Recommenda�ons

Embrace AI 
and use it cau�ously 

  Keep humans
as supervisors:

human-in-the-loop

Pre-test 
and pilot all 
process steps 

Require 
transparency

 at every step 

TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure I. Recommendations for responsible artificial intelligence (AI) use for evidence synthesis in conservation.
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Outstanding questions
Given the complexity and lack of
standardized reporting in conservation
studies, AI may perform significantly
worse, or need substantially more train-
ing, in conservation versus medical
research. How does the reliability of AI
in evidence synthesis differ between
research fields?

Gray literature can harbor key evidence
for conservation interventions, but is
often sparsely and cryptically distributed
across the web. Currently, lists of gray
literature sources are often limited by
the knowledge of the synthesis advisory
team. Can we improve AI to identify
(local) gray literature sources more effec-
tively and efficiently? How can we prop-
erly train and validate AI-supported
screening of non-English records?

People working on conservation
evidence syntheses are often not
very familiar with AI and may shy
away from the expected steep learn-
ing curve needed for implementation.
What do reviewers need from devel-
opers to ease the transition to using
AI, and vice versa?

How canwe increase the reproducibility
of LLMs in conservation evidence
syntheses?

Specification of the output format,
audience, and type and order of training
examples can all affect the performance
of prompts. Certain specifications may
perform better than others, specifically
in conservation contexts. How can
prompts be optimized to improve
conservation evidence syntheses?

Can LLMs facilitate the use of ‘living’
systematic reviews to address pressing
issues in conservation science?

What standards of transparency are
needed to ensure that AI is not misused
in producing evidence syntheses?

Are practitioners and policy makers
process. Lack of transparency leads to limited peer scrutiny and accountability in AI-supported
evidence syntheses and prevents equitable and responsible development of AI.

Hence, the best practice moving forward is to be explicitly clear about how AI is being used in
evidence syntheses, which may include detailed reporting of the prompts and instructions
given to an LLM and how it was tested for replicability and reliability. This ensures transparency
and reproducibility to some extent. Repeatability can be limited because models are probabilistic
and constantly updated with new data. Thus, multiple runs of the same model over time may
produce different responses. This is a challenge that requires future research to fully understand
its impact on evidence synthesis and, ultimately, on conservation management decisions.

Concluding remarks
AI is not a silver bullet and conducting a reliable evidence synthesis requires a lot of work and
will always be time-consuming and require attention to detail (Box 3). However, AI tools can
help improve the location and consideration of gray literature and evidence in a variety of lan-
guages that were not traditionally included in syntheses. AI may make evidence synthesis
faster, more accessible, and inclusive to a greater number of researchers. Although decision
making in conservation involves more than just scientific evidence, expanding the availability
of the information base will increase opportunities for developing informed policies and
management actions (see Outstanding questions).

More broadly, while we have focused on how AI tools can be used to synthesize evidence for
biodiversity conservation, we suggest that ecologists and evolutionary biologists can also benefit
from using these tools to efficiently identify the state of knowledge in their respective disciplines.
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