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Abstract

Responses of natural populations to climate change are driven by how multiple climatic and biotic factors affect survival and reproduction,
and ultimately shape population dynamics. Yet, despite substantial progress in synthesizing the sensitivity of populations to climatic
variation, comparative studies still overlook such complex interactions among drivers that generate variation in population-level metrics.
Here, we use a common framework to synthesize how the joint effects of climate and biotic drivers on different vital rates impact
population change, using unique long-term data from 41 species, ranging from trees to primates. We show that simultaneous effects of
multiple climatic drivers exacerbate population responses to climate change, especially for fast-lived species. However, accounting for
density feedbacks under climate variation buffers the effects of climate change on population dynamics. In all species considered in our
analyses, such interactions between climate and density had starkly different effects depending on the age, size, or life-cycle stage of
individuals, regardless of the life history of species. Our work provides the first general framework to assess how covarying effects of
climate and density across a wide range of population models can impact populations of plants and animals under climate change.

Keywords: density dependence, comparative demography, structured population models, ecological forecasting, biodiversity
conservation

Significance Statement

There is a growing consensus that complex interactions among vital rates and numerous abiotic and biotic drivers complicate simple
predictions of climate-change impacts on plant and animal populations. Here, we use a unique dataset of some of the longest-studied
populations of 41 plant, bird, and mammal species to compare the effects of such complex mechanisms on population persistence.
Despite the unique context of each study population, our results show remarkable generalizable patterns of population responses to
climate variation. To advance future research, we provide fully reproducible models and an open-access data repository, enabling

broad-scale integration of demographic responses to climate change.

Introduction

Among the multiple challenges for biodiversity conservation, the in-
creasing severity of climate change, interacting with other global-
change drivers, is of particular concern (1). Inferring general patterns
of how populations of plants and animals respond to such complex
interactions, beyond single case studies, is a priority for theoretical
and applied research and management (2). All populations in nat-
ural communities are structured by variation in genetic and pheno-
typic traits, and often also developmental stages, which determine
how different rates of survival and reproduction are spread through-
out the life cycle (3). In structured populations, climatic effects on
population abundances are then filtered by how different biotic
and abiotic drivers (including climate) affect trait-, age-, or stage-
specific survival and reproduction (4-13)). For instance, population
persistence may be particularly affected when several climatic fac-
tors simultaneously reduce survival and reproduction of several life-
cycle stages, accelerating population decline (5). In particular, com-
pound effects of hotter and drier climatic conditions on individuals
are projected to increase under climate change and can have strong
negative impacts on natural populations and communities (14, 15),
especially in combination with land-use change (16). However, pop-
ulations may also be buffered from adverse climatic effect, when vi-
tal rates with higher impact on population growth, i.e. adult survival,
exhibit the least temporal variability and thus stabilize population
fitness (17-21). Furthermore, a decrease in one vital rate under cli-
mate stress (e.g. recruitment) can be compensated with increases
in other vital rates, such as survival of the remaining recruits or
adults, under negative density feedbacks (6, 7, 22). This occurs be-
cause, when individuals compete for resources, negative climatic ef-
fects on hetero- or conspecific abundance will also ease competition
(6, 23), which can allow the populations to recover faster from or
show higher resilience to adverse climatic effects (24). The role of
density dependence may be particularly important in assessing
climate-change effects on population dynamics (23). Therefore, to
broadly understand the impacts of climate change in complex nat-
ural systems, we need to understand how intrinsic and interspecific
mechanisms interact to mediate such impacts on natural popula-
tions (25, 26).

Despite substantial progress to synthesize the sensitivity of
populations to climatic variation, comparative studies have large-
ly overlooked complex mechanisms of interacting drivers and vi-
tal rates that generate variation in population-level metrics. For
instance, previous studies have linked global indices of tempera-
ture and rainfall to abundances or population growth rates to
show that terrestrial populations of plants and animals with
shorter generation times are relatively more sensitive to climatic
variation (27, 28). Despite producing important insights, such ana-
lyses have not investigated vital-rate responses to multiple cli-
matic factors and did not consider biotic drivers such as density
dependence. A recent study compared the relative effect on plant
population growth rates of perturbing abiotic vs. biotic drivers,
but did not assess how simultaneous effects of different drivers
on different vital rates affect populations (29). This contrasts
with the growing consensus that complex interactions among vi-
tal rates and biotic and climatic drivers complicate projections of
persistence under climate change (25, 30-34).

We synthesize, for the first time, how interacting climatic and bi-
otic drivers change population dynamics across taxa by affecting dif-
ferent vital rates such as reproduction and juvenile and adult
survival. Given the evidence for the importance of the effects of mul-
tiple abiotic drivers and their interactions with density feedbacks on
population dynamics (5-12), we hypothesized that, generally, the
simultaneous effects of several climatic drivers in vital-rate models
amplify population responses to climate change, but that climate-
change impacts on populations are buffered when intra- or interspe-
cific density dependence is incorporated in vital-rate models.

We reviewed the ecological literature and identified studies
that quantitatively linked at least two climatic drivers or one cli-
matic and one biotic driver to at least two vital rates. Following
(31), we defined climatic drivers as direct measures of tempera-
ture or precipitation, i.e. not drivers that affected climate indirect-
ly, such as the Southern Annular Mode (i.e. Catharacta lénnbergi
from (35); see Supplementary Material for a complete list of selec-
tion criteria). Among the biotic drivers, we distinguished intraspe-
cificinteractions (e.g. density dependence and social interactions)
and interspecific interactions (e.g. competition, food availability,
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predation, and diseases). We then built structured population mod-
els and used them to compute sensitivities of population growth
rates (36) to a given climatic driver, either accounting for simultan-
eous effects of all other drivers on vital rates or keeping other driv-
ers fixed, thus reducing the complexity of environmental effects.
We also compared the effects of perturbing different single vital
rates to understand whether population-level sensitivities are driv-
en by changes in specific vital rates across species. When testing
our hypothesis, we controlled for potential confounding factors,
most importantly the life-history strategy of populations, which
has been shown to strongly mediate population responses to envir-
onmental change (27, 37). We created a database making all data
and code freely available online to allow researchers to link age-
or stage-specific vital rates to population responses under environ-
mental change for further analyses such as forecasts.

Results

We extracted data from 23 studies, including 41 species (15 birds,
eight mammals, and 18 plant species). Among these species, 18 ma-
trix population models, eight integral projection models, five inte-
grated population models, and 10 individual-based models were
used, and vital rates were typically modeled using generalized linear
models. Among biotic drivers, intraspecific density dependence was
most commonly included as a driver in vital-rate models (i.e. in 13
studies: four birds, six mammals, and three plants), while interspe-
cificinteractions were considered in only four cases. For an overview
of life-history strategies, covariates, and demographic status of the
species included in this comparative study, see Table S7. For each
species, we calculated the scaled absolute sensitivities (|S]), i.e.
changes in the population growth rate, 4, to observed climatic vari-
ation (standardized differences between maximum and minimum
climatic values) (29). In most studies, we calculated 4 for either a sin-
gle (meta)population or a representative average population across
the habitat range, as in the case of eight bird species (38) and 11
Mediterranean tree species (39)—that is, vital-rate models did not
distinguish populations explicitly. However, three studies (see
Supplementary Material) modeled vital-rate responses to climatic
and biotic drivers that differed among populations. Here, we aver-
aged sensitivities across populations to calculate species-specific
average sensitivities to climate comparable across species (29).
Additional analyses showed that such averaging did not affect re-
sults (Table S4). We also repeated analyses excluding these three
studies altogether; this did not affect our results either (Table S5).

We modeled the variation in [S| using a modified meta-
regression approach (40), where we pooled the results from all
studies into one generalized linear hierarchical model. Our model
included average age at maturity, a proxy for the fast-slow con-
tinuum of life-history strategies (41). As expected, slower-paced
species had lower absolute sensitivities of 1 (|S|) to climatic drivers
compared to faster-paced species (Fig. 1, Table 1; fyaturiy = —1.13
+0.19). These patterns agree with theoretical expectations (i.e.
demographic buffering hypothesis (18, 42)) and previous empirical
studies (27, 28, 37, 43) and suggest that fast-paced life histories
across taxa are more labile to, or track, climatic fluctuations,
whereas slow-paced life histories buffer population dynamics
from multiple climatic effects (18, 27, 37).

Population responses to multiple climatic drivers
and density dependence

Across life histories, sensitivities |S| to changes in a focal climatic
driver were consistently higher when covarying climatic drivers

were also perturbed than when holding other climatic drivers con-
stant (Bnocovariation = —0.25 = 0.11; Table 1, Fig. 1). Thus, synergistic
effects of different climatic drivers can have a stronger impact on
population dynamics than considering the effects of such drivers
in isolation, as is typically done in sensitivity analyses. At the
same time, |S| were lower for populations where intraspecific dens-
ity dependence explicitly affected vital rates along with climatic
drivers, as opposed to populations that did not consider how cli-
matic drivers interact with density dependence (fpensityves=
—1.00+£0.56; Table 1, Figs. 1 and S1). These differences in including
vs. excluding density dependence in population models were stron-
gest when we accounted for the full complexity of environmental
effects in sensitivity analyses (Fig. S1). Thatis, |S|increased by hold-
ing density dependence constant when perturbing a climatic driver
as opposed to adjusting for observed changes in intraspecific dens-
ity when the focal perturbed climatic driver was at its minimum
and maximum (Bnocovariation:Density =0.40 £ 0.19). This suggests
that covariation between climate and density may be critical in
moderating climate-change impacts on populations across a wide
range of taxa (5-12, 44, 45). Additional analyses further isolating
the effects of density feedbacks vs. different biotic and abiotic driv-
ers in vital-rate models confirmed that covariation with density
lowered |S| when climatic drivers were perturbed (Fig. S2).

Demographic pathways of climate effects
on populations

We perturbed climatic drivers in each vital-rate model separately
for 26 species to understand how different vital rates mediate the
sensitivity of 4 (|S]) to these drivers. For the remaining species, we
could not perturb single vital rates due to the complexity of the
models. A generalized linear regression model revealed that fast-
paced life histories, i.e. ones with a lower age at maturity (43),
were relatively more sensitive to climate perturbations in repro-
duction and survival of nonreproductive individuals than slow-
paced life histories (Table 2, Fig. S5). This is to be expected, as
reproduction contributes relatively more to population dynamics
of fast-paced species (37). Our results provide further evidence
that fast-paced life histories buffer critical vital rates from climatic
perturbations less than slow-paced ones (18-20, 37), because they
have a higher energy budget that they can invest into growth, re-
production, or dispersal after perturbations (46). However, a closer
look at sensitivities of A to vital-rate-specific effects of climatic driv-
ers revealed a complex picture (Fig. 2). Across life histories, A can be
equally affected by perturbations in several vital rates, and some
vital rates showed strong responses to one environmental variable
but weak responses to other variables (Figs. 2 and S9-538).
Overall, our results showed that growth-rate sensitivities, |S],
varied substantially among species/studies (Tables 1 and 2).
While the fixed and random effects in our generalized linear
mixed models (GLMMs) jointly explained >80% of the variance
in |S], the proportion of variance attributed to random effects
was always relatively higher (Tables S1-S5, Fig. S3). The effect of
species explained >50% of the random variation in the model.
We also note that while 20 studies included only one species, three
modeled several species, and we could not completely separate
species and study effect—attempting to do so resulted in overpar-
ameterized random effects. Although we accounted for potential
variables that may have confounded our results, i.e. number of
vital rates modeled and average number of parameters per vital
rate, one reason for such high variance among species or studies
may be the varying complexity among studies in model design
or the specific climatic variable considered—complexity that we
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Fig. 1. Scaled sensitivities of population growth rates to climate, |S|, are lower when accounting for changes in population density under climate change.
Sensitivities are shown for species where density effects were not modeled explicitly (A) or were added (B) as covariates in vita-rate models. Different
colors indicate sensitivity analyses under full environmental complexity (covariation with other drivers considered when perturbing a focal climate
driver in vital-rate models) or reduced complexity (keeping other drivers as their average values when perturbing a focal driver). The lines represent
predicted |S| over a range of ages of sexual maturity. The shaded areas indicate 95% model prediction intervals (see Table 1 for model coefficients). To aid
visualization, the points show the observed sensitivity values of each species and perturbation scenario averaged over all perturbed climatic drivers and
allresampled |S| under parameter uncertainty with error bars showing the SE. Figures S9-511 show the full distributions of resampled values per species.
We labeled some example species across different life histories and taxa. Note that the points for a given species on the x axis are slightly separated so
that error bars do not overlap. Silhouettes were downloaded from PhyloPic, licence CCO 1.0, and CC BY-NC-SA 3.0 for Dracocephalum austriacum (credit:
Alexander Schmidt-Lebuhn) and CC BY 4.0 for Prunella collaris (credit: Matej Frantisek Calfa).

Table 1. Output of model assessing how age at sexual maturity,
covariation with other drivers, presence of density feedbacks in
vital-rate models, and other covariates affected scaled
sensitivities of population growth rates to changes in climate, |S|.

Fixed effects Coefficient SE P-value
Intercept —3.085 0.945 0.001
Covariation,, -0.250 0.112 0.026
Densityyes -1.004 0.556 0.070
Age at sexual maturity -0.991 0.200 <0.001
Number of vital rates —-0.221 0.501 0.660
Parameters per vital rate 0.760 0.497 0.127
Covariationp,:densityyes 0.470 0.192 0.014
Random effects Variance SD Prop. variance
Species/group (intercept) 1.738 1.318 0.633
Species/group covariationy, 0.241 0.473 0.088
Group (intercept) <0.001 <0.001 <0.01
Group covariationy, <0.001 <0.001 <0.01
Residual 0.767 0.757 0.279

Marginal R? (variance explained by fixed effects): 0.300. Conditional R? (variance
explained by fixed and random effects): 0.829. The fixed effects and random
effects of the GLMM with gamma log link are shown here. The coefficient, SE,
and P-value are reported for each fixed effect, whereas variance and SD are
reported for each random effect, as well as proportion of variance, which
indicates the proportion of the total random-effect variance explained by
different grouping variables. Nested random effects were incorporated due to
multiple observations within species and groups (Nsamples = 17,240, Nspecies = 41,
Ngroups = 3). Nsamples reflects all resampled S| for each perturbation scenario and
species to account for parameter uncertainty. Bold P-values indicate statistical
significance (a=0.05).

could not account for as independent covariates in our analysis.
On the other hand, high variability in responses to environmental
drivers among species has also been observed in recent studies
(28, 31, 47, 48). Thus, while we can discern generalizable pat-
terns in population responses to climatic perturbations, only
the inclusion of a wider range of future studies can disentangle
the complex sources of context-dependent variation in popula-
tion dynamics.

Discussion

Natural populations of plants and animals are increasingly af-
fected by climate-change worldwide (49, 50). By identifying under
what context populations are more susceptible to negative effects
of climatic drivers, we can prioritize conservation efforts and de-
velop targeted strategies to mitigate adverse effects. Our com-
parative analyses shed light on some common demographic
pathways through which populations of plants, mammals, and
birds respond to complex interactions of climatic and biotic driv-
ers. We show that simultaneous effects of multiple climatic driv-
ers increase population sensitivity to climate change, while
interactions between density dependence and climate can effect-
ively lower such sensitivity. Our results thus have important im-
plications for assessing how resilient populations are to climate
change. They suggest that, in cases in which we know that mul-
tiple climate drivers influence vital rates, measuring the effect
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Table 2. Output of model assessing how age at sexual maturity,
vital-rate type, presence of density feedbacks in vital-rate models,
and other covariates affected scaled sensitivities of population
growth rates to changes in climate, ||, calculated by perturbing
individual vital rates.

Fixed effects Coefficient SE P-value

Intercept -3.324 1.143 0.003

Vital ratenonreproductive survival -0.620 0.385 0.107

Vital ratereproductive survival 0.030 0.363 0.936

Age at sexual maturity -2.157 0.529 <0.001

Number of vital rates -0.738 0.564 0.191

Parameters per vital rate 0.850 0.541 0.117

Age at sex. mat.:vital 1.412 0.596 0.012
ratenonreprodl,lctive survival

Age at sex. mat.:vital 1.097 0.491 0.025
ratereproductwe survival

Random effects Variance SD Prop.

variance

Species/group (intercept) 2.057 1.434 0.272

Species/group vital 2.336 1.528 0.283
ratenon1repr0ductive survival

Species/group vital 2.078 1.442 0.264
I-atelreproductive survival

Group (intercept) <0.001 <0.001 <0.01

GTOUP vital ratenonreproductive survival <0.001 <0.001 <0.01
Group vital ratereproductive survival <0.001 <0.001 <0.01
Residual 0.957 0.998 0.180

Marginal R? (variance explained by fixed effects): 0.271. Conditional R? (variance
explained by fixed and random effects): 0.878. The fixed effects and random
effects of the GLMM with gamma log link are shown here. The coefficient, SE,
and P-value are reported for each fixed effect, whereas variance and SD are
reported for each random effect, as well as proportion of variance, which
indicates the proportion of the total random-effect variance explained by
different grouping variables. Nested random effects were incorporated due to
multiple observations within species and groups (Nsamples = 13,040, Ngpecies = 26,
Ngroups = 3). Nsamples reflects all resampled [S| for each perturbation scenario and
specles to account for parameter uncertainty. Bold P-values indicate statistical
significance (&= 0.05). Note that while perturbing one vital rate at a time, we
accounted for covariation with other factors in the focal rate but set the
covariates in the other vital-rate models to their mean values.

of only one of these climatic drivers on population dynamics likely
overestimates its effects, while omitting how climate interacts
with density feedbacks can substantially underestimate indirect
effects of climate on populations.

Recent studies have emphasized that future climate risks to
natural populations and humans will be exacerbated by com-
pound effects of climate drivers (1, 51). While previous re-
search has focused on understanding such compound effects
on single species or populations (e.g. reviewed in 28, 32, 52),
our results provide the first comparative evidence across
different contexts that synergistic effects of different climatic
drivers can have a strong impact on population dynamics.
Compound climatic effects, such as low rainfall and high tem-
perature, often constitute climatic extremes, e.g. hot droughts
(51) and are becoming increasingly common (1). Such extremes
can have strong, nonadditive effects on physiological processes
of plants (53) and animals (54), negatively affecting population
dynamics (5, 30, 55). In meerkats (Suricata suricatta), for in-
stance, extreme heat in a relatively dry rainy season can lead
to substantial loss of body mass and increased risks of deadly
disease outbreaks (56). We note, however, that our study as-
sessed changes in the magnitude but not in the direction of
population responses to perturbations in climate. Therefore,
compound effects, such as unusually warm and rainy repro-
ductive seasons, may also lead to strong increases in popula-
tion growth (56), particularly for fast life histories (42, 57).

Climatic factors do not affect populations in isolation; other
abiotic and biotic factors also play a role, and their impacts
vary among populations and individuals within those popula-
tions (32, 58). Our results suggest that across taxa, adverse cli-
mate effects can be buffered by decreasing the number of
individuals in a population and thus easing the effects of intra-
specific density, when present in populations (5, 7). In turn, for
populations that increase in abundance under climate change,
a resulting stronger effect of negative density dependence may
increase population fluctuations under adverse environmental
conditions (34). Other studies have also demonstrated the im-
portance of density feedbacks in regulating population re-
sponses under land-use change (59) or disease outbreaks (60,
61), while populations of some social species that show non-
linear responses to population densities may be particularly sus-
ceptible to climate change if adverse climatic effects reduce
optimal densities (5). Similarly, climate change also affects pop-
ulations through changes in interspecific interactions such as
predation, competition, or facilitation (12, 62, 63). However,
interspecific interactions are still very rarely explicitly modeled
when projecting population dynamics (31), including in the stud-
ies used in our meta-analysis.

Despite this growing evidence on the importance of assessing
interactions of abiotic and biotic effects when quantifying popula-
tion persistence under climate change (4, 5, 13, 29, 31), such as-
sessments are challenging. Unlike climatic variables that are
often included as continuous covariates in vital-rate models and
are easily perturbed, interactions with individuals of the same
population or even different species took on many complex forms
in the population models we used in this study. Some studies only
included indirect or static measures of biotic effects. For example,
the tree species in our analysis had a colonization factor in their
models, which was indirectly related to density but was decoupled
from climate variables in vital rates (39). Similarly, the models of
Certhia familiaris, Linaria cannabina, Lophophanes cristatus, Prunella
collaris, Prunella modularis, Pyrrhula pyrrhula, Sitta europaea, and
Turdus torquatus did not contain density as a continuous driver
in their vital-rate models (which was required for our sensitivity
analyses), but density served as a fixed species-specific parameter
affecting fecundity (38). Thus, we could only assess the effects of
covariation between climate and density dependence in 13 of the
41 modeled species. Although they represented all three taxo-
nomic groups and covered a wide range of life histories, resulting
in an unbiased sample, understanding whether density feedbacks
are a general mechanism that moderates population fluctuations
under climate change for a wider range of taxa requires broaden-
ing comparative analyses that can account for complex density
effects.

Density feedbacks are not equally important in all populations
(64), and their effects have been tested and considered to not sub-
stantially affect population dynamics in the case of Marmota fla-
viventer and Lavandula stoechas (see Supplementary Material).
However, the potential effects of density feedbacks have not
been tested in many recent population model (31), likely due to
a combination of lack of data and model complexity. In addition,
most frameworks to predict biodiversity loss under global change
do not explicitly model dynamic interactions between density and
global-change drivers (65). We thus emphasize that including
density feedbacks in the climate-demography models, for in-
stance using population density or population size as a covariate
inmodels (12, 34), may be key to understand how resilient natural
populations are to climate change. If such feedback is not in-
cluded due to data limitations or modeling constraints, our results
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Fig. 2. For any species, scaled sensitivities of population growth rates (|S|) vary substantially when perturbing single vital rates. Perturbations are shown
for the species where we could perturb single vital rates. The plots are ordered by ascending age at sexual maturity and the colors indicate the taxa
mammals, birds, and plants. The points represent |S| for each species, driver, vital rate, and parameter sample in vital-rate models. The boxplots display
the distribution of |S], including the median (central line), the interquartile range (box), and the range of the data (whiskers), with outliers shown as black
POINts (Nsamples per species and vital rate = 100, Nsample for Halobaena caerulea per vital rate = 50; s€€ Supplementary Material). If some sensitivities of some vital rates are
missing, it is because these species did not have a climatic variable (but could have a biotic variable) in this specific vital rate.

suggest that it is important to at least discuss the potential impli-
cations of such omissions (66).

Ultimately, the effects of climate change on population dynam-
ics are filtered by the strength and direction of driver effects on
different vital rates and how much the latter contribute to popu-
lation dynamics (4-13, 19, 23, 30, 33-35, 37). For any life history,
even slow-paced ones where adult survival is the key vital rate
driving population dynamics (37), changes in population growth
were the results of complex effects of various drivers across differ-
ent vital rates, showing high context dependence (13). Rainfall
scarcity or extreme temperatures may differently affect individu-
als depending on the habitat, season, and life-cycle stage consid-
ered (5, 30), or depending on how other species in a given
community are responding to climate change (62). The complex-
ity of the life cycle may also indicate how much a population is
buffered from adverse environmental effects (52). Some species
have dormant life-cycle stages that can protect populations
from environmental fluctuations (62). Dispersal, which was mod-
eled in some studies considered here (see Supplementary
Material), can stabilize decreasing populations and allow individ-
uals to track new suitable habitats and may itself be strongly

mediated by climate (67). Therefore, from trees to primates, iden-
tifying how different abiotic and biotic factors impact populations
across their full life cycle is a key to be able to target conservation
efforts towards certain factors during certain times of the life
cycle.

Our work has advanced comparative demographic analyses in
two important ways. First, we standardized sensitivity analyses
across a wide variety of population models, ranging from classic
matrix population models to integrated population and integral
projection models and individual-based models. By including
the experts for each study system, we ensured that our methods
did not produce inadvertent errors. Second, we provide a freely ac-
cessible and dynamic (i.e. constantly updated) database of popu-
lation models that was compiled for this study. This offers anideal
basis to expand the number of studies and analyses in the future
—for instance, forecasting how changes of local climatic drivers
may affect populations and whether such effects can be approxi-
mated by global climate indices (68). We also recognize several
limitations of our work. One limitation is that we could not ac-
count for taxonomic and geographical biases, as we relied on
available high-quality structured models that integrate multiple
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environmental factors (see Supplementary Material for study-
specific details). Such tailored models are available for specific ter-
restrial plants, mammals, and birds but are still lacking for many
invertebrate species (69, 70), where relatively little is known on the
demographic pathways through which climate-change impacts
abundance (71). We also have a geographic bias in our data, as
most study systems are from the Northern Hemisphere.
Additionally, we only considered studies published in English.
These types of biases can limit our ability to generalize patterns
and employ conservation efforts based to comparative analyses
(72, 73).

When searching the literature for appropriate studies, we also
discovered that reproducibility of ecological studies remains a
problem. Of the 76 studies that met our search criteria, we could
only replicate population models of 24%. For the remaining stud-
ies, data and code to replicate analyses were not freely available
and could often not be reproduced even when in contact with au-
thors. Thus, we emphasize that making not just data but also code
available is an important step towards reproducible comparative
analyses in ecology (74).

Our comparative analyses provide evidence that interactions
among biotic and abiotic drivers, and the complex effects of
such multiple drivers on different vital rates, hinder simplistic
predictions of population persistence under climate change. We
emphasize the need to recognize and incorporate interactions be-
tween climate and density dependence into full life-cycle models
in order to understand and potentially mitigate the threat that
climate-change poses on natural populations.

Materials and methods

Literature search

Our main objective was to collect code and data from studies
which (i) modeled vital rates (e.g. survival, growth, and reproduc-
tion) in natural populations as a function of at least two climatic
variables or one climatic and one biotic variable and (ii) con-
structed structured population models from which population
growth rates could be obtained. We focused on studies where
data were obtained in natural, unmanipulated populations (i.e.
discarding experimental studies); and where the environmental
variables were continuous so that we could calculate means and
SEs (Eq. 1). We therefore excluded studies that constructed mod-
els for good/bad, dry/wet environments, etc. To obtain suitable
studies, we performed a targeted review of the literature. We first
considered a recent review, which revealed a lack of understand-
ing regarding comprehensive demographic responses to climate
change for terrestrial mammals, including 87 species (31). From
the publications in this review, we selected those that met our cri-
teria. To supplement data from this list of studies, we conducted a
Web of Science search using the search terms from (31) and also
checked the Padrino database (75) as well as (76) (details in
Supplementary Material). To be included in our database, vital-
rate models had to be reproducible, i.e. the regression models
were fully reported, including their formula, coefficients, and
SEs. We were able to obtain data from 23 studies that met all these
criteria.

As the first step of the analysis, we prepared a standardized
protocol to build and perturb different structured population
models to maximize the ease of comparison across studies
(https://doi.org/10.5281/zenodo.16992231). For help with conduct-
ing these analyses for the selected models, we contacted the au-
thors of relevant studies. We extracted regression coefficients

from tables to rebuild vital-rate models when possible; alterna-
tively, the latter were provided by the authors of a given study.
We then reconstructed population models from these vital rates,
and the authors from the original papers reviewed these models
to ensure that they were correct. In some cases, authors already
provided the R code to rebuild the population model (for more
information, see Supplementary Material). The environmental co-
variate data were also obtained from the authors of the papers. All
studies built structured population models based on >7 years of
demographic data collection and/or using data across the distri-
bution range of species, and the range of environmental covariate
values was sufficient to robustly build and perturb structured
population models (see Supplementary Material on study-specific
details).

Next, we compared among the species how perturbations in
climatic variables affect long-term population fitness, 4, i.e. the
sensitivity of 1 to climatic drivers. For studies that provided ma-
trix population models or integral projection models, we calcu-
lated 1 as the annual asymptotic population growth rate using
the R package popbio (77) version 2.7. For studies that developed
individual-based or integrated models, we calculated 4 as the
mean of annual growth rates over at least 50 years from at least
100 simulations (see Supplementary Material for study-specific
details; Figs. S38-S52). The approach of how 1 was calculated
did not affect our results (Table S3, Fig. S6). To obtain sensitiv-
ities of 4 to climatic drivers, we calculated 2 under minimum
and maximum values of a climatic driver while (i) accounting
for the actual observed values of other drivers when the focal
driver was at its minimum or maximum (sensitivities with “co-
variation”) or (ii) holding the other drivers constant at their aver-
age values (sensitivities “without covariation”). When studies
modeled random year effects consistently across vital rates,
we set the years to ones where a climatic driver was at its min-
imum or maximum in analyses. We then calculated the scaled
sensitivities according to Morris et al. (29) for each population
and driver (Eq. 1):

Amax — 4min

ISl= (dmax - dmin)/SDd ' <1)
The driver values dpmax and dmin produced the population growth
rates when the driver was set to its maximum value (Amax) and
its minimum value (Amin). The denominator of the scaled sensi-
tivity || is the difference in the driver levels in SD units. The
scaled sensitivity makes it possible to compare |S| across different
studies and driver types (29). We calculated |S| for each climatic
driver in vital-rate models (see “Sensitivity analyses” in
Supplementary Material). We tested the robustness of the sensi-
tivity metric by comparing|S| to the most common type of metric
for summarizing outcomes in ecological meta-analyses: log re-
sponse ratios (see “Alternative sensitivity parameterizations”
in Supplementary Material, Figs. S7 and S8, Table S6).

We accounted for uncertainties around all |S| estimates by re-
sampling parameters from vital-rate models and recalculating 4
and |S| each time. More specifically, if a study reported the SEs of
the regression coefficients, we simulated the parameter distribu-
tions and sampled parameters from it, whereas in the case of
Bayesian regressions, we sampled parameters from the Markov
Chain Monte Carlo (MCMC) posteriors. We produced 100 |S| esti-
mates for most species but had to use fewer samples in some
cases due to computational limits (see species-specific details in
Supplementary Material). In three cases, we averaged |S| over dif-
ferent populations to get species-specific results. However, this
averaging did not affect our overall conclusions (Table S4).
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Further, we perturbed the climatic drivers in each vital rate
separately whenever possible (Figs. S12-S38 for the specific vital
rates in each species’ model), in the same manner as above,
to get vital-rate-specific |S|. In this case, all environmental driver
values covaried with the focal driver in the perturbed vital rate
but were held at their average values in other vital rates. Lastly,
for populations (n=13) where intraspecific density dependence
was explicitly considered as a driver in vital-rate models, we per-
formed additional perturbations: We accounted for the actual ob-
served values of other climatic or biotic drivers when perturbing a
focal climatic driver (sensitivities with covariation), but held dens-
ities constant (i.e. did not account for covariation with density).
We did this to test how much |S| depended on density dependence
moderating the effects of climatic changes.

Statistical analyses

We used a GLMM, assuming a Gamma-distributed response under
a log link function, to understand the underlying mechanisms in-
fluencing population-level sensitivities |S| to climate change. We
chose the Gamma distribution because the scaled sensitivities
were positive values larger than zero. The resulting model fit
well to observed data (Fig. 1), and model fit was substantially bet-
ter than using a log-normal distribution, based on Akaike infor-
mation criterion (AIC) and residual plots (78). We included
log(age at sexual maturity) as a continuous covariate for the effect
of life-history speed on |S|. To test whether covariation among cli-
matic drivers and lambda changed |S|, we incorporated as predict-
or variables covariation with other drivers when 1 was calculated
under minimum/maximum values of a focal climatic driver (cat-
egorical; accounted for or not), intraspecific density effects (cat-
egorical; incorporated or not in vital-rate models), and the
interaction between the two. We focused on intraspecific density
effects to analyze the role of biotic interactions in population dy-
namics because this was the most common type of biotic variable
included in vital rate models across species (Table S7). We also
controlled for a potential effect of model complexity on |S|, by in-
cluding the log(number of vital rates) and log(mean parameters
per vital rate) in each population model. Taxonomic groups and
species were integrated as nested random effects on the model
intercept to account for nonindependent species-specific pertur-
bations of different climatic drivers in vital-rate models. To ac-
count for differences among taxonomic groups and species in
how much driver covariation affects |S|, the same nested random
effects were also applied on the slope of the covariation variable.
We also assessed whether |S] differed depending on which type of
climatic driver was perturbed in vital-rate models (temperature
vs. rainfall) by fitting another GLMM akin to the main analysis
but including climatic driver as a covariate (Table S2, Fig. S4).

To better understand which vital rates were driving |S|, we re-
peated the GLMMs using |S| calculated by perturbing climatic driv-
ers in single vital rates. To facilitate comparisons among species,
we grouped the vital rates of each species into three main types:
survival of nonreproductive individuals (including juveniles),
survival of reproductive individuals, and reproduction (including
reproductive success and recruitment). We excluded trait change
(including growth and maturation) as a vital rate, as it was
only modeled in four species: M. flaviventer, Rhabdomys pumilio,
Suricata suricatta, and Protea repens. The resulting GLMM had a
similar structure as the one for the global |S|, with two differences.
First, as we calculated vital-rate-specific |S| without simplifying
driver covariation in specific vital rates, covariation was not in-
cluded in the model. Second, as we held variables constant in

nonperturbed vital rates, we simplified the model structure fur-
ther by excluding whether species included or excluded density
feedbacks in vital-rate and population models. We included
main vital-rate type as a covariate and tested whether the climatic
effects of different vital rates on |S| differed among life histories,
via the effects of log(age at maturity), and used an interaction
term of vital rate and age at sexual maturity.

We calculated marginal and conditional R? for all GLMMs to
quantify the variance in the data explained by the fixed effects
and random and fixed effects, respectively (79). We made all the
data and code available online, along with the templates, ensuring
that future analyses follow the same structure (https:/doi.org/10.
5281/zenodo.16992231).

Supplementary Material

Supplementary material is available at PNAS Nexus online.
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