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Abstract
Animal gut microbiomes, particularly those of herbivorous mammals, are strongly shaped by the host diet. However, how 
dietary composition impacts gut microbiome variation across a population of wild hosts is unknown.  To examine the rela-
tionship between gut microbiome composition and diet composition across individuals, we employed a multi-omic approach 
leveraging both 16S rRNA amplicon sequencing and plant DNA metabarcoding (tRNL primer) in 39 wild yellow-bellied 
marmot fecal samples from the Rocky Mountains. We utilized the 16 s rRNA primer to target microbes and the tRNL primer 
to target plants. Our results indicate that the marmot gut microbiomes appear to be stable against dietary variation, even across 
individuals with significantly different diets. We also show that colony membership significantly impacts marmot dietary 
variation, while age does not. Thus, while diet clearly plays a significant role in shaping mammalian gut microbiomes, our 
study suggests that diet composition within the same species has a minimal impact on gut microbiome variation, particularly 
in the absence of experimental manipulations and dietary interventions.
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Introduction

Host-associated microbes, or “microbiomes”, are largely 
ubiquitous across the animal kingdom (Colston 2017; MM 
Curtis 2011). Of particular interest is the gut microbiome, 
the most abundant and diverse community of host-associated 
microbes. Gut microbiomes are critical components of host 
physiology (Forsythe and Kunze 2013) through the regu-
lation of metabolism (Nieuwdorp 2014), immune function 
(Round 2014; Shi et al. 2017), and animal behavior (Johnson 
2020; Renson et al. 2020; Vernice et al. 2020). As such, gut 
microbiomes are important to understanding the survival 
and evolution of animal hosts.

The gut microbiome exhibits both plastic and resilient 
properties in the context of microbiome composition and 
diversity (McGuinness et al. 2022). Across a variety of host 
clades, gut microbiomes vary with host diet (Clayton et al. 
2016; Dai et al. 2024; Klure and Dearing 2023; Mallott et al. 
2018), environment (Degregori et al. 2021; Kim et al. 2021), 
or disease state (Nishida et al. 2018). Diet, in particular, has 
a significant impact on animal gut microbiome composition 
(Beam et al. 2021) that may lead to sustained changes in gut 
microbiome composition and diversity (Riaz Rajoka et al. 
2017). In fact, host diet categories such as carnivore, herbi-
vore, and omnivores can often predict gut microbiome com-
position across the animal kingdom (Claesson 2012; Leem-
ing et al. 2019; Muegge 2011). In humans, dietary variation 
has led to direct changes in microbiota makeup associated 
with metabolic diseases (Bourdeau-Julien et al. 2023), and 
proliferations of specific bacteria have been documented in 
response to fructan uptake (Sonnenburg et al. 2010). Intro-
duction of microbiota-accessible carbohydrates results in 
marked changes in the mouse gut microbiota (Smits et al. 
2016), and diet explained up to 10% of microbial variation in 
humans (Salonen et al. 2014), highlighting how external host 
factors such as diet can shape gut microbiome composition. 
Thus, it is clear that diet plays a pivotal role in shaping the 
mammalian gut microbiome.
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However, gut microbiomes can also show remarkable 
stability, even in the face of dietary variation. For exam-
ple, high/low fiber dietary interventions in human subjects 
led to temporary gut microbiome changes that reverted to 
previous compositions after only a few weeks (Wu 2011). 
Similarly, the initiation of the Nordic diet in humans who 
were then tested for the ratio of Prevotella to Bacteroides in 
the gut showed little effect on gut microbiome composition 
(Roager et al. 2014). Even fecal microbiome transplanta-
tions between the microbiota of zebrafish and mice led to 
the microbiomes returning to their original compositions, 
not that of the transplanted, indicating the importance of 
host phylogenetic stability over diet and environment (Rawls 
et al. 2006). In wild animals, factors such as host phylog-
eny and environment can significantly outweigh host diet in 
explaining gut microbiome composition, such as in mam-
mals (Amato et al. 2019; Finnegan et al. 2024Nielsen et al. 
2022), in birds (Baiz et al. 2023) and in fishes (Kim et al. 
2021). Gut microbiome compositional variability associated 
with changes in host diet may be transient and short term 
(David et al. 2014), while the most abundant gut microbes, 
often termed the “core gut microbiome”, remain unchanged 
during such interventions (Faith et al. 2013; Michel et al. 
2023). However, high-resolution data to measure gut micro-
biome variability across individuals with varying diets is 
lacking, especially in non-human wild hosts. Understand-
ing the extent to which gut microbiomes are stable against 
dietary variation in animal hosts is a timely endeavor for 
the field.

Gut microbiome studies examining non-human mammal 
gut microbiomes and diet often use broad diet categories 
which may lack the specificity necessary to define a causal 
link between diet and microbial makeup. For example, stud-
ies on mammalian gut microbiomes often only use three 
broad diet categories such as herbivore, omnivore, or carni-
vore rather than higher-resolution measures (Groussin et al. 
2017; Ley et al. 2008; Muegge et al. 2011; Nishida et al. 
2018). Moreover, many of these studies include multiple 
host species (Ley et al. 2008; Song et al. 2020; Youngblut 
et al. 2019), which, while important for comparative infer-
ence, can add phylogenetic variation that may confound 
with dietary variation in hosts. Additionally, existing stud-
ies investigating microbe–diet interactions have largely been 
limited to humans or animals in captivity which may provide 
different results compared to wild animal hosts (Bowerman 
et al. 2021). As such, we aimed to better isolate the effect 
of dietary variation in hosts by analyzing the covariation 
between gut microbiome and dietary composition among 
individuals within the same wild host species.

Wild hosts are of particular interest to this study, because 
they represent an approach to studying the naturally occur-
ring diversity among gut microbes without the pressure of 
domestication or captivity. It is well established that living in 

the wild versus captivity not only impacts the health of spe-
cies, but can establish changes to their microbiome (Maluk-
iewicz et al. 2022). However, microbiome studies often use 
captive animals because of their ability to accurately docu-
ment diet. Thus, we set out to investigate the relationship 
between the gut microbiome and diet diversity that exists in 
nature by studying wild hosts in the yellow-bellied marmots 
(Marmota flaviventer) and quantifying their diet through diet 
metabarcoding.

Diet composition has been traditionally quantified 
through observation or stomach content surveys, but these 
methods have limitations. More recently, dietary metabar-
coding has proven an effective, less invasive approach to 
identify what animals eat. Importantly, because diet meta-
barcoding can be done on fecal samples, it is far less inva-
sive than traditional stomach content analysis, which often 
requires euthanized hosts and can only detect prey that are 
visually identifiable (Barbato et al. 2019; Mychek-Londer 
et al. 2020).

To gain a better understanding of the host diet’s role in 
shaping gut microbiome diversity, we employed a non-
invasive multi-omic approach to investigate the association 
between DNA-derived diet composition collected with the 
trnL primer (plant identification) (Taberlet et al. 2007) and 
gut microbiome composition using the 16S rRNA primer 
(microbe identification) (Caporaso et al. 2011) in yellow-
bellied marmots in the Rocky Mountains, an exceptionally 
well-studied social rodent (Armitage et al. 1976; Blumstein 
2009).

Materials and methods

Microbiome sample processing and sequencing

Study species and sites

We studied yellow-bellied marmots in and around the Rocky 
Mountain Biological Laboratory (RMBL), located in the 
Upper East River Valley in Gothic,

Colorado, USA (38°77′N, 106°59′W). Marmots are hiber-
nating mammals, and spend the summer months (May–Sep-
tember) feeding intensively to store up energy to survive the 
winter months (Blumstein 2009). As such, we sampled mar-
mots during the summer months to accurately quantify their 
feeding behavior. All sampling procedures were conducted 
following Johnson et al38. Fecal samples were collected from 
trapped marmots and immediately bagged and put on ice 
to be stored at −20 °C within 2 h of collection and then 
transported on dry ice for 12 h to be stored at − 80 °C for 
long term. To avoid contamination while handling, all fecal 
samples were collected from the pre-sterilized traps, while 
using sterile nitrile gloves and sterilized tweezers. Traps 
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were sterilized with bleach and ethanol in between sampling 
events. Over the course of the study, samples were collected 
from ten different colonies: five from higher elevation colo-
nies (mean elevation 3043 m) and five from lower elevation 
colonies (mean elevation 2883 m), separated by a maximum 
distance of 4.9 km. However, for the purposes of this work, 
only a subset of these samples was taken for genomic analy-
sis. From a larger subset of samples collected over five con-
secutive summers (2015–2019) in between the months of 
June and August, we chose a smaller subset, yielding 39 total 
paired samples, covering a range of metadata variables. In 
the field, the following metadata categories were collected: 
colony, valley position, animal ID, lactation status, mass, 
and age class. Because marmots are also social creatures and 
socialize within colonies (Armitage et al. 1976; Blumstein 
2009), which can affect their gut microbiome composition 
(Pfau et al. 2023), we analyzed both colony and valley posi-
tion as separate variables, where valley position served to 
capture environmental variation, whereas colony served to 
capture both environmental variation and social behavior.

Microbiome and diet metabarcoding sample processing 
and sequencing

We isolated DNA from fecal samples with Qiagen Power-
Soil Extraction kits following the manufacturer’s protocol 
(Germantown, Maryland, USA). Samples were subdivided 
into two distinct PCR amplification reactions prior to being 
sequenced separately. We generated 16S libraries using the 
515F (GTG​CCA​GCMGCC​GCG​GTAA) and 806R (GGA​
CTA​CHVHHHTWT​CTA​AT) primers targeting the V4 
region of the 16S rRNA gene (Caporaso et al. 2011). To 
target plant DNA, we multiplexed these samples with prim-
ers targeting the P6 loop (5’-GGG​CAA​TCC​TGA​GCCAA, 
reverse 5’-CCA​TTG​AGT​CTC​TGC​ACC​TATC) of the trnL 
chloroplast region—a universal plant marker widely used 
to identify a broad range of plant taxa (Taberlet et al. 2007), 
including digested plants for diet metabarcoding purposes 
(Kartzinel et al. 2015). Samples underwent PCR, in tripli-
cate 25 l reactions, using a Qiagen Multiplex PCR kit with 
the following thermocycler conditions for 16S primers: 1 
cycle of 94 °C for 3 min; 35 cycles of 94 °C for 45 s, 50 °C 
for 60 s, and 72 °C for 90 s; and 1 cycle of 72 °C for 10 min 
(Thompson et al. 2017). Samples exposed to trnL primers 
underwent identical laboratory methods except for the first 
PCR where trnL PCR samples underwent the following reac-
tion parameters: 1 cycle of 95 °C for 10 min; 35 cycles of 
95 °C for 30 s, 50 °C for 30 s, and 72 °C for 2 min. Triplicate 
reactions were pooled after confirming amplification success 
through gel electrophoresis, dual-indexed samples using the 
Nextera UD Index Kit (Ilumina, San Diego, USA), and then 
purified with OMEGA Bio-Tek MagBind magnetic beads 
(Norcross, Georgia, USA). Laragen (Culver City, California, 

USA) performed quantification and pooling to create librar-
ies with equimolar sample concentrations to ensure that both 
the trnL library and 16S library received equal coverage. 
Multiplexed libraries were paired end sequenced (300 bp 
per sequence) on an Illumina Miseq v3 at Laragen. We used 
negative controls from the DNA extraction and PCR pro-
cesses throughout sample processing and added these to the 
final pooled library for sequencing.

Bioinformatic processing

Plant DNA processing

From 39 original paired samples from fecal samples, we 
obtained 1,603,048 which were then pared down after ini-
tial pruning of the datasets for high-quality reads. First, we 
aligned forward and reverse reads into a single file, which 
we completed using the MICCA (MICrobial Community 
Analysis) platform (Albanese et al. 2015). After merging, 
we removed any remaining PCR primers from the sequences 
by filtering for the known sequences outlined in the sam-
ple processing section. Next, using MICCA, we filtered 
sequences with a max ee rate (i.e., the quality of read in 
terms of confidence) of 0.75 and a minimum length of 40, 
filtering for % of reads. Using MICCA, we created opera-
tional taxonomic units (OTUs) with 97% sequence simi-
larities. Rarefaction was applied to the samples such that 
each sample was appropriately downsampled to the 1000 
read sequencing depth available using the vegan package 
(v2.5–7) and removing any samples falling below this mini-
mum. This selected depth allowed for retention of 100% of 
our samples while maintaining the diversity among captured 
features (Fig S2A,B). We assigned taxonomy using a naive 
Bayes taxonomy classifier trained on the CaleDNA database 
for TRNL primers (Meyer et al. 2021). We then performed 
multiple sequence alignment to determine the phylogenetic 
assembly of the OTUs derived from the taxonomical assign-
ment using MAFFT (Katoh et al. 2002).

Microbial DNA processing

Using qiime2 (Boylen et  al. 2019) instead of MICCA, 
sequences were first aligned forward and reverse, demul-
tiplexed by sample barcodes before adapters/primers were 
removed using qiime cutadapt and data denoised using 
dada2 (Callahan et al. 2016) and merged into a feature table 
for ASV analysis. Filters were applied to remove low abun-
dance features, removing features with a total abundance of 
less than ten summed across all samples. Following these 
initial pruning steps and filtering out of low-quality reads, 
data was rarefied to the 1000 read sample depth within 
microbial samples for analysis using the qiime2 feature table 
rarefy function, removing any samples below this threshold. 
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Using the SILVA database Bayes taxonomy classifier, we 
performed a taxonomic assignment. Qiime2 was utilized to 
remove reads with non-bacterial assignment following these 
feature table productions.

Sequencing and filtering results

Diet data resulted in a combined total of 203,149 forward 
and reverse reads across the 39 collected feces samples, 
averaging 5209 reads per sample. Our negative sample gen-
erated less than ten reads. From these initial reads, filtering 
for quality and removal of primer sequences left 163,048 
reads for further analysis, averaging 4181 reads per sample. 
Rarefaction performance left 24% of the OTU table, which 
began with a range of 832–31,281 reads per sample. A total 
of 6.41% of reads were assigned as unclassified at the family 
level, while 58.2% of reads were labeled as unclassified at 
the species level.

For microbial sequencing, initial reads yielded a total 
of 6,371,587 forward and reverse paired reads with a mean 
sequence read depth of 41,405 reads per sample. After fil-
tering for high-quality reads, 1,614,799 forward and reverse 
reads remained. Rarefaction was used, leading to the filter-
ing out of 76.4% of reads from the ASV table, which began 
with a range of 277–31,497 reads per sample. Following tax-
onomic assignment, a total of 9.7% of reads were assigned 
as unclassified at the family level, with 95% of reads being 
labeled as unclassified at the species level.

Statistical analyses

Statistical analysis was conducted in R using the phyloseq 
package (McMurdie and Holmes 2013).To determine the 
relative abundance of each taxonomic group in both diet and 
microbial samples, we generated relative sum abundance 
plots on the phylum and family levels. To produce a sense of 
within-sample diversity, we utilized the estimate_richness () 
function of the phyloseq (v1.30.0) package to generate alpha 
diversity plots from each samples’ rarefied OTU (diet) or 
ASV (microbe) tables.

To assess the beta diversity across diet samples, we 
constructed distance matrices using unweighted Uni-
Frac (Lozupone et  al. 2011) and Bray–Curtis (Beals 
et al. 1984). Then we visualized these matrices through 
a principal coordinate analysis (PCoA). We focused on 
the UniFrac metric of beta diversity, since this metric 
captures microbial diversity at multiple taxonomic scales, 
and the host diet acts on various microbial taxonomic 
scales (Groussin et al. 2017). We produced the distance 
matrices with the packages Phyloseq (v1.30.0) and vegan 
(v2.5–7) using the statistical software R (v4.2.2) and then 
repeated these steps separately to generate PCoA plots for 
microbial data. To quantify and analyze beta diversity, 

we employed a PERMANOVA analysis for a diet and gut 
microbiome comparison using the same packages with 
the adonis2 function employed. Each factor was analyzed 
within its own PERMANOVA model since a multi-factor 
PERMANOVA would involve too few samples per treat-
ment. We selected metadata factors of particular interest 
(age, colony, colony position) and computed ANOVA-like 
differences from a two-way analysis using the ALDEx2 
package (Fernandes et al. 2013). To better interpret PER-
MANOVA results, we employed a beta dispersion test 
for microbe and diet using the betadisper function in the 
vegan package to test for the assumption of homoscedas-
ticity. To account for limitations in sequencing and to 
control spurious correlations, we transformed the OTU 
tables using the centered log ratio, or CLR (Aitchison 
1982; Gloor et al. 2017).

We note two mechanisms for examining the environ-
ment as a metadata variable, the colony itself and its rela-
tive geographic position to the valley of sample collection. 
While colonies may provide a higher-resolution grouping for 
analyzing differences in microbial and diet composition as 
well as capturing social behavior, the resulting small sample 
sizes make downstream analysis weaker in effect. Thus, we 
supplement this approach by also considering “valley posi-
tion” as a factor, with colonies being grouped as either up-
valley or down-valley colonies. As described earlier, these 
two valley locations are distinct from one another and differ 
significantly in elevation.

To analyze the covariation between host diet and gut 
microbiome composition, we conducted a multiple regres-
sion on matrices (MRM) (Breiman 2001) analysis using 
the MRM function from the ecodist package (Goslee and 
Urban, 2007). MRM was conducted using a variety of dis-
tance matrices for microbiome compositions (UniFrac, Jac-
card, and Bray–Curtis were tested) and a host diet distance 
matrix (using the same distance computations) to confirm 
the results using multiple methods of calculating distances.

Results

Yellow‑bellied marmot diet composition

At the phyla level, Streptophyta dominated the diet compo-
sition of the marmot fecal samples, encompassing nearly 
all samples with approximately 92% of the recorded phyla. 
An additional 8% were labeled as unclassified. At the order 
level, Fabales made up around 24%, Asterales 23%, Ranun-
culales 15.46% of samples, Rosales 6.7%, Apiales 6.3%, 
and Malpighiales 5.5%. At the family level, marmot diets 
comprised Fabaceae (peas) at 27%, Asteraceae (sunflow-
ers) at 23%, Rosaceae (roses) at 6.8%, and Apiaceae (celery 
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Fig. 1   A Relative family abun-
dances comprising the yellow-
bellied marmot diet. Raw 
sequence counts were trans-
formed to relative abundances 
for this plot and taxonomic 
assignments were conglomer-
ated to the family level. B 
Images of the common plant 
families found in yellow-bellied 
marmot diets. a) Fabaceae, b) 
Asteraceae, c) Rosaceae, d) 
Apiaceae
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or carrots) at 6.2% (Fig. 1A, B). Marmot diet compositions 
did not significantly differ in alpha diversity across habitat 
(Fig S1A).

Yellow‑bellied marmot gut microbiome composition

For microbial sequencing, the phyla level was dominated 
by Firmicutes (53%), Bacteroidetes (28%), and Tenericutes 
(13%) (Fig. 2A). At the order level, the major groups were 
Clostridiales at 64%, Bacteroidales at 26%, and Bacilli 
at 9%. Finally, at the family level, Ruminococcaceae was 
around 21%, S247 around 14%, unclassified at around 10%, 

and Bacteroidaceae at 6% (Fig. 2B). Marmot gut microbi-
ome compositions did not significantly differ in alpha diver-
sity across habitat (Fig S1B).

Marmot gut microbiome composition does 
not covary with diet composition

We used MRM (multiple regressions on matrices) to deter-
mine the correlation between the composition of the diet 
of a sample and the corresponding microbial community. 
Using several distance matrix methods, we found no sig-
nificant covariation between marmot gut microbiome and 

Fig. 2   a Relative abundance of 
gut microbial phyla in marmot 
fecal samples. b Relative abun-
dance of gut microbe families in 
marmot fecal samples



Oecologia          (2026) 208:15 	 Page 7 of 13     15 

diet compositions (Table 1). These results indicate that 
variation in gut microbiome is not driven by diet in our 
samples.

Colony and valley position impacts dietary variation

We examined each of the existing metadata factors of age, 
date of sample collection, year of sample collection, colony, 
valley position, lactation status, and mass to determine if 
marmot diet beta diversity correlated with any of them. Of 
these factors, colony and relative position within valley (up 
valley or down valley) had the largest impact on dietary 
beta diversity (N = 39, R2

PERMANOVA = 0.32157, PF = 0.001 
(Table 2) and N = 39, R2

PERMANOVA = 0.14104, PF = 0.001, 
(Table  2), respectively). A PERMANOVA by age also 
revealed a weaker, but significant correlation with marmot 
dietary beta diversity (N = 39, R2

PERMANOVA = 0.06245, 
PF = 0.015, Table 2). Visually, samples from the “Gothic 
Town” colony clustered together the most, relative to the 
more dispersed nature of the rest of the marmot samples in 
the PCoA space for diet (Fig. 3).

Microbiome composition similar across individuals

To explore drivers of microbial variation, we ran another 
set of PERMANOVA analyses examining the same meta-
data factors but for the microbial composition of the sam-
ples. Unlike diet, there was a minimal impact on microbi-
ome diversity by colony (N = 39, R2

PERMANOVA = 0.16583, 
PF = 0.06, Table  2) and the valley position (which can 

be viewed as a more broad categorization of the col-
ony space) showed no explanatory power (N = 39, 
R2

PERMANOVA = 0.02889, PF = 0.338, Table 2). Similarly, 
PCoA results did not reveal any significant differences in 
microbe composition for any of the metadata factors that we 
examined during sample collection. Repeating the analysis 
with different distance calculations (Bray–Curtis and Jac-
card) revealed the same pattern of colony/valley position 
driving differences in diet, but only weakly, or not at all, 
explaining differences in microbiome composition (Table S1 
and S2).

Beta dispersion results

To assess the degree of group dispersions among diet and 
microbe samples, we ran a beta dispersion analysis on 
diet and microbiome samples across both colony and val-
ley position (up- or down-valley). Testing these groups for 
dispersion in both microbial composition and diet using 
unweighted UniFrac distance matrices (Table 3), only colony 
was significant in testing microbiome homogeneity of vari-
ance across microbiome samples alone. We also achieved 
similar results with a weighted UniFrac distance matrix 
(Table S3). Repeating this analysis with different distance 
calculations (Bray–Curtis and Jaccard) corroborated that 
between metadata, group differences did not drive variance 
differences in diet composition (Table S1 and Table S2). 
However, Bray–Curtis and Jaccard distance measurements 
find some significant results showing colony and valley posi-
tion to drive variance difference between metadata groups 
(Table S1 and Table S2). When the marmot meadow colony, 
a low sample size colony (n = 3), is excluded from analysis, 
these results are no longer significant (Table S4).

ALDEx2 results

To further explore beta-diversity differences, we examined 
whether specific OTUs are unique to individual locations 
or by age demographics. For diet composition, one OTU 
(Plantae, Streptophyta, unclassified, Pinales, Pinaceae, 
Abies, unclassified) was only found in yearling marmots 
(Fig. 4A) and was also only found in the “Gothictown” 

Table 1   MRM results between all distance matrix combinations

Distance matrix type—diet Distance matrix type—
microbes

P value

Unweighted UniFrac Unweighted UniFrac 0.5
Bray–Curtis Bray–Curtis 0.9
Jaccard Jaccard 0.1
Bray–Curtis Unweighted UniFrac 0.1
Jaccard Unweighted UniFrac 0.7
Bray–Curtis Jaccard 1
Jaccard Bray–Curtis 0.7

Table 2   PERMANOVA test 
results for valley position, 
colony and age class across gut 
microbiome and diet samples. 
(UniFrac unweighted distance 
matrix)

Distance matrix Metadata R squared Df F Sum of squares Pr(> F) Sig code

Diet UniFrac Colony 0.32157 5 3.0336 1.5712 0.001 **
Diet UniFrac Age class 0.06245 1 2.3979 0.3051 0.015 *
Diet UniFrac Valley position 0.14104 1 5.9111 0.6891 0.001 ***
Microbe UniFrac Colony 0.16583 5 1.2723 1.1598 0.06
Microbe UniFrac Age class 0.044 1 1.6568 0.3077 0.052
Microbe UniFrac Valley position 0.02889 1 1.0709 0.202 0.338
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colony (Fig. 4B). Similarly, for microbes, Bacteria, Bac-
teroidetes, Bacteroidia, Bacteroidales, S24-7, unclassified, 
unclassified and Bacteria, Bacteroidetes, Bacteroidia, Bac-
teroidales, Bacteriodaceae, Bacteroides, unclassified were 
only observed in yearling marmots (Fig.4 C), but not dif-
ferentially expressed in colonies.

Discussion

Diet is a major determinant of gut microbiome composi-
tion in animal hosts (2011);Ley et al. 2008; Muegge et al. 
2011 however, our work demonstrates that the gut micro-
biome of wild hosts may be more resistant to changes in 
diet than previously thought. We generate a high-resolution 

multi-omic dataset of yellow-bellied marmots in the Rocky 
Mountains from fecal samples to extract both diet and micro-
biome compositions utilizing the tRNL and 16 s rRNA loci, 
respectively. The results from our sequencing are consistent 
with previous work on the yellow-bellied marmots whose 
main diet comprises Ranunculaceae and Asteraceae at the 
family level (Armitage 2003, Frase and Armitage 1989) 
and a microbiome consisting largely of Bacteroidetes and 
Firmicutes (Degregori et al. 2021). The diversity of the 
sequences in our microbial results is largely in agreement 
with other studies which have found the microbial diversity 
of an organism to be unaffected by diet (Chen et al. 2021; 
Rinninella et al. 2019).

Despite significant dietary variation across marmots from 
different colonies, we find that marmot gut microbiome 

Fig. 3   Principal coordinate analysis of microbiome (top) diet sam-
ples (bottom) grouped by the relative position in the valley of collec-
tion, the area in the field they were collected (colony), and the age of 

the marmot. Plot generated using a Bray distance matrix for diet and 
microbiome. Lassos represent 95% confidence intervals

Table 3   Beta dispersion results for microbes and plants across colony position using permutation test for homogeneity of multivariate disper-
sions. (UniFrac unweighted distance metric)

Distance matrix Meta data Mean squared Df F Sum of squares Pr(> F) Sig code

Diet UniFrac Colony 0.0075166 5 1.028 0.037583 0.406
Diet UniFrac Valley position 0.0000184 1 0.0025 0.000018 0.96
Microbe UniFrac Colony 0.0075302 5 2.889 0.037651 0.035 *
Microbe UniFrac Valley position 0.0014396 1 0.3219 0.00144 0.565
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variation is unchanged across individuals. Thus, host traits 
beyond feeding strategy have a greater effect than host diet 
on marmot gut microbiome composition. Across two meth-
ods of assessing the colony location, we find no significant 
differences in microbiome samples by metadata factors of 
interest. This result provides some evidence that contrasts 
previous work demonstrating the relative importance of the 
social environment in shaping the marmot gut microbiome 
(Pfau et al. 20232023); however, this could also reflect the 
smaller sample size of the study.

Our work also provides an important contrast to other 
findings that show dietary variation significantly shapes 
gut microbiome diversity, potentially due to our sampling 
a single host or species rather than a range of host taxa. 
Kartzinel et al., for example, found that diet composition 
was significantly correlated with microbiome composition 
across 33 host species of herbivorous mammals (Kartzi-
nel et al. 2019). Sampling a diversity of hosts may cap-
ture enough dietary diversity to find a significant effect in 

shaping gut microbiome composition. Our results imply 
that the composition of a single organism’s diet of the 
same species does not impact gut microbiome composition 
in the same way and suggests some degree of hysteresis, 
or lag between diet and microbial community composi-
tion. In humans, (David et al. 2014) demonstrated that 
even short-term changes to the diet can make significant 
changes to the composition of the gut microbiome. Thus, 
it is possible that marmot gut microbiomes may shift due 
to diet, but may require extreme dietary shifts to result 
in such a prolonged effect. The gut microbiome may also 
reflect the average diet of a marmot over an entire feeding 
season, in contrast to the specific diet we quantified using 
metabarcoding at a given moment of sample collection. 
To help compensate for this disparity between the two 
data types, we ensured that our fecal samples spanned the 
entire feeding season (May–August) and included a range 
of habitat types and ages. The fact that marmot gut micro-
biomes did not correlate with age, dietary variation, or 

Fig. 4   A Diet operational taxonomic units (OTUs) expression in mar-
mot samples based on age. Significant points (i.e., OTU’s differen-
tial expressed in one group versus the other) are highlighted in pur-
ple and given taxonomy (Plantae, Stretophyta, Unclassified, Pinales, 
Pinaceae, Abies, Unclassified). B Diet operational taxonomic units 
(OTUs) expression in marmot samples based on location of sample 
being inside of the Gothic town site or anywhere else. The only sig-
nificant points (OTUs with significantly higher or lower proportions) 

are highlighted in orange and given taxonomy. (Plantae, Stretophyta, 
Unclassified, Pinales, Pinaceae, Abies, Unclassified). C Microbe 
operational taxonomic units (OTUs) expression in marmot samples 
based on age (yearling or adult). Significant points (OTUs with sig-
nificantly higher or lower proportions) are highlighted in blue and 
orange. Blue—Bacteria, Bacteroidetes, Bacteroidia, Bacteroidales, 
S24-7, unclassified, unclassified and orange—Bacteria, Bacteroidetes, 
Bacteroidia, Bacteroidales, Bacteriodaceae, Bacteroides, unclassified
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habitat implies that marmot gut microbiomes are stable 
throughout the feeding season.

Given our current data, the homogenous nature of mar-
mot gut microbiome composition may be better explained 
by features such as host environment or ontogeny. Studies 
finding significant effects of host diet shaping gut microbi-
ome composition often do so when comparing hosts across 
many families or even classes—and even so, still find strong 
effects of host environment and phylogeny in addition to 
diet (Baiz et al. 2023; Groussin et al. 2017; Ley et al. 2008; 
Youngblut et al. 2019). Within humans, there are examples 
of gut microbiome stability across individuals (2011);Leem-
ing et al. 2019; Lozupone et al. 2011 however, our study pro-
vides novel evidence that gut microbiomes are stable against 
dietary composition across individuals of a wild non-human 
species consuming their natural diet.

Our work falls into the scope of existing literature sur-
rounding wild hosts, which has been challenging to ana-
lyze given the wide range of confounding variables such as 
social behavior, seasonal changes, and habitat degradation 
(Zhu 2022; Hicks et al. 2018). A large number of studies 
examining the interaction between the gut microbiome and 
an organism's diet have been restricted to humans (Leem-
ing et al. 2019; Mansour et al. 2021; Valdes et al. 2018) or 
domesticated organisms, such as mice (Reese et al. 2021; 
Wang et al. 2021). Our study provides an example of an 
understudied wild host unaffected by controlled dietary 
interventions or a laboratory environment. As a result, our 
study shows that without extreme interventions in controlled 
laboratory settings, diet may not play as large a role in shap-
ing individual gut microbiome variation in small mammals, 
such as marmots.

However, the multi-omic approach to this study is not 
without limitations, and we recognize the importance of 
selecting a primer for isolating the diet and microbiome 
composition. We focused on a subsection of diet, i.e., her-
bivory, since the trnL primer only targets plant DNA. Pre-
vious studies have shown that the herbivorous gut microbi-
ome is largely adapted to metabolize carbohydrate substrates 
(Flint et al. 2015; Newsome et al. 2020). Regarding the diet 
of marmots, it is possible that while different plant species 
may be from distinct phylogenies, they may share similar 
carbohydrate structures. Thus, the marmot gut microbiomes 
in our study may simply be encountering biochemically 
similar plant species that can undergo the same fermenta-
tive processes in the gut. We also recognize the difficulty 
in assessing diet composition for a single time point, which 
is an inherent simplification of the diet of marmots. Future 
studies should employ shotgun sequencing to better ascer-
tain gut microbiome function of yellow-bellied marmots to 
better understand how the gut microbiome aids in marmot 
digestion.
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